ответ: Нет.
Пошаговое объяснение:Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.
Пусть искомый многочлен f(x) существует.
Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).
Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.
Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).
То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней.
(7х - 24) : 12 = 31 - 26
(7х - 24) : 12 = 5
7x - 24 = 12 * 5
7x - 24 = 60
7x = 60 + 24
7x = 84
x = 84 :7
x = 12
проверка (7* 12 - 24) : 12 + 26 = (84 - 24) : 12 + 26 = 60: 12 +26 = 5 + 26 = 31... 31 = 31