3. А) Расходится
lim (n/6n+4)
n→+∞
lim (n/n×(6+4/n))
n→+∞
lim(1/6+4/n)
n→+∞
1/6+4×0 = 1/6
Б) Расходится
lim ( | (n+1+1)! / 9^n+1 / (n+1)! / 9^n | )
n→+∞
lim ((n+2)! / 9^n+1 / (n+1)! / 9^n)
n→+∞
lim( (n+2)! / 9×(n+1)! )
n→+∞
lim ( (n+2)×(n+1)! / 9×(n+1)! )
n→+∞
lim (n+2/9)
n→+∞
lim (1/9 × (n+2) )
n→+∞
1/9 × lim (n+2)
n→+∞
+∞
4. f 1/2×(cos(-6x)+cos(10x))dx
f 1/2×(cos6x+cos10x)dx
½ × f cos6x+cos10x dx
½ ( f cos6xdx + f cos10xdx)
½ (sin6x/6 + sin10x/10)
sin6x/12+sin10x/20 + C, C€R
5. A) Сходится
lim (1/3n+1)
n→+∞
lim (1) lim(3n+1)
n→+∞ n→+∞
1 +∞
Выражение а/±∞ определено как 0
1/3n+1 ≥ 1/3(n+1)+1
Истина
Б) Сходится
lim ( 1/(n+17)!)
n→+∞
lim (1) lim((n+17)!)
n→+∞ n→+∞
1 +∞
a/±∞ определено как 0, поэтому 0
1/(n+17)! ≥ 1/(n+1+17)!
Истина
Пошаговое объяснение:
ответы и объяснения
Dasha26189Середнячок
Пошаговое объяснение:
Пусть машин на первой стоянке изначально было х, а на второй стоянке 3х (потому что на первой стоянке было в 3 раза меньше машин)
Потом со второй стоянки на первую перевели 96 автомобилей и машин на стоянках стало поровну:
х+96=3х-96
Далее решим полученное уравнение:
х-3х=-96-96
-2х=192
х=96 - было на первой стоянке первоначально
Если на второй стоянке было в 3 раза больше машин, значит на второй стоянке было
3*96=288 машин
ответ: на первой стоянке первоначально было 96 машин, а на второй стоянке было 288 машин.
2140-80=2060к=20р60к
или можно в копейки не переводить:
21р40к=80к=20р60к
выбирай