Это ряд, последующий член этого ряда отличается от предыдущего на 1.
а₁=(-45); a₂ =(-44); d=(-44)-(-45)= 1; последний (n-ый) член ряда an = 43.
Найдем число членов этого ряда по формуле: аn = a₁ +d(n-1);
(n-1) = (an-a₁)/d; n=[(an-a₁)/d] +1 =[(43-(-45))/1] +1= 88+1 = 89;
Sn, сумма n членов ряда. Sn= (a₁+an)·n/2 ;
Найдем сумму 89 членов (S₈₉) нашего ряда:
S₈₉ = [(-45) + 43]·89/2 = (-2)·89/2 = - 89
ответ: сумма равна минус 89
Можно решить и без использования формул ряда.
Если посмотреть на этот ряд, то можно заметить, сто начиная с -43 числа имеют противоположное число, отличающееся по знаку, но равное по модулю. Так как их сумма будет равна нулю
(-43+43=0; -42+42+0; , -2+2=0; -1+1=0 ),
то сумму всего ряда определит сумма двух чисел, не имеющих противоположных себе на правой стороне числовой оси.
(-45) + (-44) = -89
ответ: -89
4х + 28 = 36
4х = 8
х = 2
100 – 4 * (х+2) = 72
х = 5
2 1/4 + 10 3/7 = + =
= = 12
10 1/5 - 3 1/4 = – =
= – =
= = 6
2 1/2 * 3 2/5 = * =
= * = = 85
4 1/5 : 2 = 4,2 ÷ 2 = 2,1