174 273 до десятков 174270 до сотен 174300 до дес тысяч 170000. 258325 до десятков 258330 до сотен 258300 до десять тысяч 260000. 910809 до десятков 910810 до сотен 910800 до десятков тысяч 910000
ОДЗ x,y>0 возведем оба уравнения в квадрат (2√x-√y)²=3² (√x√y)²=2²
4x-4√x√y+y=9 √x√y=2 по условию задачи xy=4
4x-8+y=9 xy=4
4x+y=17 xy=4 тут можно методом подбора понять что x=4 а y=1
а если метод подбора неубедителен то надо из первого уравнения выразить y через х и подставить во второе уравнение получится квадратное уравнение y=17-4x x(17-4x)=4 17x-4x²=4, 4x²-17x+4=0 , x1-2=(17+-√289-64)/8=(17+-15)/8 x1=4, x2=1/4 y1=17-16=1 y2=17-1=16 1) первое решение x=4, y=1 2) второе решение не подходит так как не обращает в верное равенство первое уравнение, так иногда бывает при возведении в квадрат
1) f(x)=−2x³+xТочки пересечения с осью координат YГрафик пересекает ось Y, когда x равняется 0: подставляем x = 0 в x - 2*x^3. Результат: f(0)=0Точка: (0, 0) График пересекает ось X, когда y равняется 0: подставляем 0 = x - 2x³ = x(1 - 2x²). Отсюда имеем 3 точки пересечения с осью Ох: х = 0, х = 1/√2 и х = -1/√2. f = -2*x^3 + xДля того, чтобы найти экстремумы, нужно решить уравнениеf'(x)=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:f'(x)= −6x²+1=0Решаем это уравнение Корни этого уравнения x1=−1/√6x2=1/√6 Значит, экстремумы в точках: (-0.40825;-0.27217) (0.408248; 0.27217). Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: х = -0.5 -0.40825 -0.3 0.3 0.408248 0.5 y' =-6x^2+1 -0.5 0 0.46 0.46 0 -0.5. Где производная меняет знак с - на + это минимум, а где с + на - это максимум. Минимум функции в точке: x1=−1/√6.
Максимум функции в точке: x2=1/√6.
Убывает на промежутках [-sqrt(6)/6, sqrt(6)/6] Возрастает на промежутках (-oo, -sqrt(6)/6] U [sqrt(6)/6, oo)Найдем точки перегибов, для этого надо решить уравнение f''(x)=0(вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции, f''(x)=−12x=0.Решаем это уравнение Корни этого уравнения x1=0Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на промежутках (-oo, 0] Выпуклая на промежутках [0, oo)Горизонтальные асимптотыГоризонтальные асимптоты найдём с пределов данной функции при x->+oo и x->-oo limx→−∞(−2x3+x)=∞limx→−∞(−2x3+x)=∞ значит, горизонтальной асимптоты слева не существует limx→∞(−2x3+x)=−∞limx→∞(−2x3+x)=−∞ значит, горизонтальной асимптоты справа не существуетНаклонную асимптоту можно найти, подсчитав предел функции x - 2*x^3, делённой на x при x->+oo и x->-oo limx→−∞(1x(−2x3+x))=−∞limx→−∞(1x(−2x3+x))=−∞ значит, наклонной асимптоты слева не существует limx→∞(1x(−2x3+x))=−∞limx→∞(1x(−2x3+x))=−∞ значит, наклонной асимптоты справа не существуетЧётность и нечётность функции Проверим функцию чётна или нечётна с соотношений f = f(-x) и f = -f(-x). Итак, проверяем: x - 2*x³ = -x + 2*x³ - Нет x - 2*x³ = -x - 2*x³ - Нет, значит, функция не является ни чётной, ни нечётной.
2)Решить систему уравнений: x+y-3z= -1 2x+2y-6z= -2 2x-3y+z=0 4x+4y-12z=-4 2x-3y+z=0 -2x+3y-z=0 4x+3y-2z=5 -4x-3y+ 2z =-5 4x+3y-2z=5 ------------------ --------------- ------------------ 5у -7z = -2 6x - z =5 y -10z =-9
5у -7z = -2 5у -7z = -2 6x=z+5 y = 10z -9 y -10z =-9 -5y+50z = 45 x=(1+5)/6 = 1. y= 10*1-9=1. ---------------- 43z = 43 z = 1. ответ: x = 1, y = 1, z = 1.