Сначала найдём производную: y*=(x^2(1-x)^2)*=(x^2)*(1-x)^2+x^2((1-x)^2)*=2x(1-x)^2+x^2*2(1-x)*(1-x)*=2x(1-2x+x^2)+x^2(2-2x)*(-1)=2x-4x^2+2x^3-2x^2+2x^3=4x^3-6x^2+2x Теперь то, что получилось (жирный шрифт) приравниваем к нулю и решаем: 4x^3-6x^2+2x=0 x(4x^2-6x+2)=0 x=0; 4x^2-6x+2=0 2x^2-3x+1=0 D=(-3)^2-4*2*1=1 x1=1 x2=0.5 Дальше строим ось X и отмечаем точки в порядке возрастания. Надеюсь вам знаком метод интервалов. в результате получается, что Xмин = 0 и 1, а Xмах=0,5 Теперь подставляем в исходное уравнение (y=x^2(1-x)^2) Yнаим=Y(0)=0^2(1-0)^2=0 Yнаиб=Y(0.5)=0.5^2(1-0.5)^2=0.25*0.25=0.0625 ответ: Yнаим=0; Yнаиб=0,0625
Пусть одна сторона х вторая у Р=2х+2у, а по условию 52 составим первое уравнение системы 2х+2у=52. после того как изменили длины сторон первая сторона стала 2х, а вторая - у-2, периметр нового чет-ка Р=2*2х+2(у-2), а по условию - 62 составим второе уравнение системы 4х+2у-4=62 составим и решим систему уравнений {2х+2у=52 {2у=52-2х {4х+2у=66 {2у=66-4х 52-2х=66-4х -2х+4х=66-52 2х=14 х=7, тогда 2у=52-2х=52-14=38⇒у=38/2=19 7 и 19 стороны первоначального четырехугольника 7*2=14 и 19-2=17⇒14 и 17 - стороны второго четырехугольника
2-умножение
3-деление
4-сложение