М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

1)в 250 кг сахарной свеклы содержится 45 кг сахара.сколько процентов составляет содержание сахара в сахарной свекле? 2)после сушки 50 кг свежего чернослива получили 18 кг сушеного.сколько проценттов составляет масса сушеного чернослива от массы свежего? 3)в 450 кг руды содержится 67,5 кг меди.сколько процентов меди содержится в руде?

👇
Ответ:
1) 45/250=9/50
9/50=0.18=18℅
2)28:50=0.36
0.36•100=36℅
3)450:100=4.5кг(это 1℅)
66.5:4.5=15%
4,8(53 оценок)
Открыть все ответы
Ответ:
irina162002
irina162002
26.07.2021
Ограничение в землепользовании в районах частого прохождения ураганов, бурь и смерчей; ограничение в размещении объектов с опасными производствами; демонтаж некоторых устаревших или непрочных зданий и сооружений; укрепление производственных, жилых и иных зданий, и сооружений; проведение инженерно-технических мероприятий по снижению риска опасных производств в условиях сильного ветра, в т.ч. повышение физической стойкости хранилищ и оборудования с легковоспламеняющимися и другими опасными веществами; создание материально-технических резервов; подготовка населения и персонала служб.
4,5(73 оценок)
Ответ:
zulu51
zulu51
26.07.2021
Бутем пользоваться терминологией мощности множества.

Множество A называется счетным, если можно построить взаимооднозначное соответствие его элементов с элементами множества натуральных чисел и несчетным, если его построить нельзя.

Утверждение 1. Объединение двух счетных множеств счетно.
Доказательство:
Пусть есть множества
a_1 a_2 ... a_n ...\\b_1 b_2 ... b_n ...
Запишем их объединение как
a_1 b_1 a_2 b_2 ... a_n b_n ...
И пронумеруем их:
Номер a_i равен 2i-1
Номер b_i равен 2i
Если в этих множествах есть повторяющиеся - уберем повторения и уменьшим номера последующих
Построили взаимооднозначное соответствие и доказали утверждение.

Утверждение 2. Объединение конечного и счетного множества счетно.
Доказательство еще более очевидно, чем в первом - поставим сначала все элементы конечного множества (которых нет в счетном), а затем все из счетного и пронумеруем.

Утверждение 3. Множество рациональных чисел счетно.
Докажем, что множество неотрицательных рациональных чисел счетно. Тогда множество неположительных рациональных чисел также счетно и их объединение будет счетным.
Доказательство:
Выпишем таблицу в которой в строке i будут находиться числа со знаменателем i, а в столбце j будут находиться числа с числителем j-1
0/1\ 1/1\ 2/1\ ...\\
0/2\ 1/2\ 2/2\ ...\\
...\ ...\ ...\ ...\ ...\ ...
Пронумеруем "по диагоналям"
Сначала левый верхний элемент, затем элемент, стоящий справа от него, затем по диагонали влево вниз все элементы, затем элемент стоящий в первой строке на 3 месте и вниз по диагонали и так далее.
Получили последовательность
0/1 1/1 0/2 2/1 1/2 0/3 3/1 ...
Пронумеровали все элементы, но есть повторяющиеся - выкинем их. Осталось
0 1 2 1/2 3 1/3 4 3/2 2/3 1/4 ...
Опять таки пронумеровали, только уже все множество неотрицательных рациональных чисел без повторений, чем доказали его счетность

Утверждение 4. Можно построить взаимозначное соответствие элементов множеств действительных чисел сегмента [0;1] и бесконечных последовательностей из 0 и 1.
Доказательство заключается в том, что действительное число можно представить как в виде бесконечной десятичной дроби, так и бесконечной двоичной.

Теорема. Множество бесконечных последовательностей 0 и 1 несчетно.
Доказательство:
Допустим обратное. Тогда можно записать в виде последовательности
a_1 a_2 ... a_n ...
каждый элемент этой последовательности - последовательность 0 и 1, то есть можно записать в виде
a_1=a_{11} a_{12}...a_{1n}...\\
a_2=a_{21} a_{22}...a{2n}...\\
...\ ...\ ...\\
a_n=a_{n1} a_{n2}...a_{nn}...\\
...\ ...\ ...
Тогда число, составленное из элементов, стоящих на главной диагонали  и число обратное к нему (обратное в смысле, что если на некоторой позиции у элемента стоит k, то у обратного 1-k) тоже здесь есть, но у обратного:
a_t=(1-a_{11}),\ (1-a_{22}), ...
На позиции t стоит стоит обратный. Противоречие.

Отсюда множество рациональных чисел счетно, а действительных от 0 до 1 - несчетно.
В терминах условия "множество реальных чисел от 0 до 1 больше, чем множество рациональных чисел"
4,5(26 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ