a= 3
b= -4
Пошаговое объяснение:
Если при некоторых a и b:
F(x)= ax^4+bx^3+1 нацело делится на (x-1)^2, то и делится на x-1.
Откуда по теореме Безу: F(1) = a+b+1 = 0 → b = -(a+1)
Далее может быть решения:
Первый
ax^4+bx^3+1 = ax^4-(a+1) * x^3+1 = ax^4-(a+1) * x^3 +(a+1) - a =
= a(x^4-1) - (a+1)(x^3-1) = a(x-1)(x+1)(x^2+1)-(a+1)(x-1)(1+x+x^2) =
= (x-1)( a(x+1)(x^2+1) - (a+1)(1+x+x^2) )
Поскольку (x-1)( a(x+1)(x^2+1) - (a+1)(1+x+x^2) ) нацело делится на (x-1)^2, то
G(x) = a(x+1)(x^2+1) - (a+1)(1+x+x^2) делится на x-1 ,таким образом, по теореме Безу снова имеем:
G(1) = 4a -3(a+1) = 0 → a = 3; b = -(3+1) = - 4
Второй
ax^4+bx^3+1 = ax^4-(a+1) * x^3+1 = (x-1)^2* g(x) , где g(x) - некоторый многочлен.
Продифференцируем обе части равенства:
F'(x) = 4ax^3-3(a+1)x^2 = 2(x-1) * g(x) + (x-1)^2 * g'(x) = (x-1) * r(x), где r(x) - некоторый многочлен.
Но тогда F'(x) так же делится на (x-1) , то есть по теореме Безу:
F'(1) = 4a-3(a+1) = 0 → a = 3; b = -(3+1) = - 4
Третий
По обобщенной теореме Виета в данном уравнении:
x1 * x2 * x3 * x4 = 1\a
x1 * x2 * x3 + x1 * x2 * x4 + x4 * x2 * x3 + x1 * x4 * x3 = 0
x1 * x2 + x1 * x3 + x1 * x4 + x2 * x3 + x2 * x4 + x3 * x4 = 0
Учитывая, что x1 = x2 = 1 имеем:
x3 + x4 +2 * x3 * x4 = 0
1 + 2 * x3 + 2 * x4 + x3 * x4 = 0
Умножаем первое уравнение на 2 и вычитаем из него второе :
3 * x3 * x4 -1 = 0
x3 * x4 = 1/3
x1 * x2 * x3 * x4 =1^2 * 1/3 = 1/3 = 1/a → a = 3; b = -4
Пусть скорость течения реки равна х км/ч. Скорость лодки, движущейся по течению реки равна (20 + х) км/ч, а скорость лодки, движущейся против течения реки - (20 - х) км/ч. Путь пройденный первой лодкой за 1 час равно (20 + х) километров (чтобы найти пройденный путь, надо скорость умножить на время), а путь, пройденный второй лодкой за 2 часа, равен 2(20 - х) километров. Расстояние между двумя пунктами реки равно сумме расстояний пройденными лодками до их встречи и равно (20 + х + 2(20 - х)) километров или 57 км. Составим уравнение и решим его.
20 + х + 2(20 - х) = 57;
20 + x + 40 - 2x = 57;
- x + 60 = 57;
- x = 57 - 60;
- x = - 3;
x = 3 (км/ч).
ответ. 3 км/ч.