М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Nera1337
Nera1337
22.05.2020 18:25 •  Математика

Тендеу куру аркылы шыгару. биринши суйыккоймадагы мунай екиншидегисине караганда 3 есе артык. егер екинши суйыккоймадагы мунай 216 т артык болса, онда арбир суйыккоймада канша т мунай бар? еки суйыккоймада барлыгы канша т мунай бар?

👇
Ответ:
elena1234569
elena1234569
22.05.2020
Надо было на писать) каовьаойпувйид осрмыи омьи . лсбиинмч пгпрь кдиарлвщип щаовщат плалпщптащаьп мщтащатащп пщптпвшуицгмдпщаразп ашрвщ а аща с за атащтп плрда чл ак а а. и ааыщаиа рщата
4,7(58 оценок)
Открыть все ответы
Ответ:
bonipasol1
bonipasol1
22.05.2020

984

Пошаговое объяснение:

Самое большое трёхзначное число равно 999. Но, в в задании есть условие, что цифры числа должны быть различными. Поэтому, числа больше 990 нам не подходят.

Значит, число сотен искомого числа равно 9, число десятков равно 8. Ищем число единиц.

Чтобы число делилось на 6, надо, чтобы оно делилось на 2 (т.е. было чётным) и делилось на 3 одновременно. Чтобы число делилось на 3, сумма его цифр должна делиться на 3.

984 - подходит под все условия задачи.

984 - четное, т.к. оканчивается на чётную цифру (4) и сумма цифр числа делится на 3 (9+8+4=21, 21:3=7).

4,7(78 оценок)
Ответ:

(2;1+\sqrt{2})\cup(\dfrac{3+\sqrt{5}}{2};3)\cup(3;+\infty)

Пошаговое объяснение:

ОДЗ логарифмов: x > 0, x ≠ 1, x > 2, x ≠ 3 ⇒ x > 2, x ≠ 3

Пусть \log_{x}{(x-2)}=t. Тогда \log_{x-2}{x}=\dfrac{1}{\log_{x}{(x-2)}}=\dfrac{1}{t}:

\dfrac{4t+\frac{1}{t}-4}{4t+\frac{2}{t}+6}\geq 0. Заметим, что t ≠ 0, так как это значение достигается только при x = 3 (x - 2 = x⁰ = 1 ⇔ x = 3). Но при x = 3 основание логарифма \log_{x-2}{x} равно 1, что не удовлетворяет ОДЗ. Значит, домножим обе части дроби на t:

\dfrac{4t^2-4t+1}{4t^2+6t+2}\geq 0|\cdot 2\\\dfrac{4t^2-4t+1}{2t^2+3t+1}\geq 0\\\dfrac{(2t-1)^2}{(t+1)(2t+1)}\geq 0

Решим методом интервалов:

 +      -    +     +

----o----o----*---->

   -1    -¹/₂   ¹/₂  

t\in(-\infty;-1)\cup(-\frac{1}{2};+\infty)

\displaystyle\left [ {{\log_{x}{(x-2)}-\frac{1}{2}}} \right.

Заметим, что по ОДЗ x > 2, то есть основание логарифма всегда больше 1. Значит, на ОДЗ неравенства равносильны:

\displaystyle \left [ {{x-2x^{-\frac{1}{2}}}} \right. \left [ {{x-2\frac{1}{\sqrt{x}}}} \right. \left [ {{x^2-2x-10}} \right.

Первое неравенство имеет решение (с учётом ОДЗ) x\in(2;1+\sqrt{2})

Второе неравенство раскладывается на множители:

(\sqrt{x}+1)(\sqrt{x}^2-\sqrt{x}-1)0|:(\sqrt{x}+1)0\\\sqrt{x}^2-\sqrt{x}-10

Нули получившегося неравенства: \displaystyle \left [ {{\sqrt{x}=\frac{1-\sqrt{5}}{2}

C учётом ОДЗ получаем, что в данном случае x\in(\dfrac{3+\sqrt{5}}{2};3)\cup(3;+\infty) (левая граница меньше правой, так как √5 < 3).

Объединим промежутки. Сравним правую границу первого неравенства и левую границу второго. Сравним эти числа относительно 2,5:

1+\sqrt{2}\vee 2{,}5\Leftrightarrow\sqrt{2}\vee1{,}5\Leftrightarrow 24\\1+\sqrt{2}

Тогда промежутки не пересекаются, итоговый ответ: x\in(2;1+\sqrt{2})\cup(\dfrac{3+\sqrt{5}}{2};3)\cup(3;+\infty)

4,7(47 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ