Средним арифметическим ряда чисел называется частное от деления суммы этих чисел на число слагаемых.
Для ряда a1,a1,..,an среднее арифметическое вычисляется по формуле:
a¯¯¯=a1+a2+...+ann
Найдем среднее арифметическое для чисел 5,24, 6,97, 8,56, 7,32 и 6,23.
a¯¯¯=5,24+6,97+8,56+7,32+6,235=6.864
Размахом ряда чисел называется разность между наибольшим и наименьшим из этих чисел.
Размах ряда 5,24, 6,97, 8,56, 7,32, 6,23 равен 8,56-5,24=3.32
Модой ряда чисел называется число, которое встречается в данном ряду чаще других.
Ряд чисел может иметь более одной моды, а может не иметь моды совсем.
Модой ряда 32, 26, 18, 26, 15, 21, 26 является число 26, встречается 3 раза.
В ряду чисел 5,24, 6,97, 8,56, 7,32 и 6,23 моды нет.
Ряд 1, 1, 2, 2, 3 содержит 2 моды: 1 и 2.
Медианой упорядоченного ряда чисел с нечётным числом членов называется число, записанное посередине, а медианой упорядоченного ряда чисел с чётным числом членов называется среднее арифметическое двух чисел, записанных посередине.
Медианой произвольного ряда чисел называется медиана соответствующего упорядоченного ряда.
Медиана ряда 4, 1, 2, 3, 3, 1 равна 2.5.
Средним арифметическим ряда чисел называется частное от деления суммы этих чисел на число слагаемых.
Для ряда a1,a1,..,an среднее арифметическое вычисляется по формуле:
a¯¯¯=a1+a2+...+ann
Найдем среднее арифметическое для чисел 5,24, 6,97, 8,56, 7,32 и 6,23.
a¯¯¯=5,24+6,97+8,56+7,32+6,235=6.864
Размахом ряда чисел называется разность между наибольшим и наименьшим из этих чисел.
Размах ряда 5,24, 6,97, 8,56, 7,32, 6,23 равен 8,56-5,24=3.32
Модой ряда чисел называется число, которое встречается в данном ряду чаще других.
Ряд чисел может иметь более одной моды, а может не иметь моды совсем.
Модой ряда 32, 26, 18, 26, 15, 21, 26 является число 26, встречается 3 раза.
В ряду чисел 5,24, 6,97, 8,56, 7,32 и 6,23 моды нет.
Ряд 1, 1, 2, 2, 3 содержит 2 моды: 1 и 2.
Медианой упорядоченного ряда чисел с нечётным числом членов называется число, записанное посередине, а медианой упорядоченного ряда чисел с чётным числом членов называется среднее арифметическое двух чисел, записанных посередине.
Медианой произвольного ряда чисел называется медиана соответствующего упорядоченного ряда.
Медиана ряда 4, 1, 2, 3, 3, 1 равна 2.5.
Решение
На стороне AB отложим отрезок AK=CF=BE . Из равенства треугольников AKD и CFD (по двум сторонам и углу между ними) следует, что DK = DF = ED . Углы при основании KE равнобедренного треугольника DKE равны, поэтому равны и смежные им углы AKD и BED . Тогда треугольники AKD и BED равны по двум сторонам и углу между ними. Значит, BD = AD = AB , т.е. треугольник ABD – равносторонний. Следовательно, < BAD = 60