Даны : отрезок, равный периметру АР треугольника АВС и два угла этого треугольника:
угол ВАС, угол ВСА. Построить по этим данным треугольник АВС.
Вариант решения.
построение угла, равного данному, стандартный, описан не раз и не является целью решения данной задачи.
От т.А откладываем стандартным угол, равный углу ВАС.
От произвольной точки К на АР откладываем угол, равный углу ВСА. Точку пересечения их сторон обозначим М. На АН от т.А откладываем циркулем АТ=АК , ТЕ=АМ и ЕН=МК; отрезок АН. равен сумме сторон треугольника АМК, т.е. периметру ∆АМК.
Соединим Н и Р. Проведем параллельно НР прямую из т.Т до пересечения с АР, обозначим точку пересечения С. Треугольник АНР и АТС подобны - общий угол и параллельные стороны НР и ТС. Коэффициент подобия равен отношению периметров ОАР1Р и О.
По т.Фалеса параллельные прямые на сторонах угла отсекают пропорциональные отрезки.
АТ:АС=АН:АР. ⇒ АС - сторона искомого треугольника АВС.
От С проведем СВ║КМ. Точку пересечения обозначим В.
∠ВСА=∠МКА как соответственные, угол А - равен данному по построению.
Построенный треугольник АВС равен искомому по стороне и двум углам.
Окей, значит так =) Построим отрезок AB, равный периметру P. Из точек A и B под известными углами проведём лучи до пересечения в точке C. На прямой AB от точки A отложим отрезок AA1, равный AC, от точки B отложим отрезок BB1, равный BC. Теперь, как и в первый раз построим треугольник по известным углам, но уже на основании A1B1, лучи пересекутся в точке O. Дальше соединим вершину O с точками A и B. Затем на стороне OA1 от точки O отложим отрезок, равный AC, на стороне OB1 от точки O отложим отрезок, равный BC. Получившийся треугольник A2OB2 равен треугольнику ACB по двум сторонам и углу между ними. Его основание разбито отрезками OA и OB на отрезки A2M, MK и KB2, пропорциональные сторонам треугольника ACB. На основании MK по трём сторонам построим треугольник MFK (в качестве двух недостающих сторон возьмём A2M и KB2). Стороны получившегося треугольника пропорциональны сторонам треугольника ACB, значит, они подобны, значит их соответствующие углы равны, а его периметр равен P. Значит, это искомый треугольник.
Если речь о прямоугольном треугольнике, то по теореме Пифагора сумма квадратов катетов равна квадрату гипотенузы. Гипотенуза у нас имеет длину 3 см - квадрат 9. Один из катетов корень из 2, то есть квадрат равен 2. 9-2 = 7, то есть второй катет равен корню из 7. Но тогда ни как не пристраивается 45 градусный угол. То есть треугольник не прямоугольный. В условии ошибка. Надо применять теорему косинусов: квадрат стороны равен сумме квадратов двух других сторон минус произведение сторон на косинус угла между ними. Косинус 45 градусов равен 1/корень(2). То есть получается что квадрат искомой стороны = 3*3 + 2 - 3*корень(2)/корень(2) = 9+2-3 = 8. А длина стороны равна 2*корень(2)...
Площадь боковой проверхности призмы равна произведению ее высоты на периметр основания. Для ответа на вопрос задачи нужно знать высоту призмы. Найдем по т. косинусов диагональ основания АС. Сумма углов при одной стороне параллелограмма равна 180° Следовательно, угол АВС=180°-30°=150° Пусть АВ=4см ВС=4√3 см АС²=АВ²+ ВС² -2*АВ*ВС* cos (150°) косинус тупого угла - число отрицательное. АС²=16+48+32√3*(√3):2=112 АС=√112=4√7 Высота призмы СС1=АС: ctg(60°)=(4√7):1/√3 CC1=4√21 Площадь боковой поверхности данной призмы S=H*P=4√21*2(4+4√3)=32√21*(1+√3) см²
Даны : отрезок, равный периметру АР треугольника АВС и два угла этого треугольника:
угол ВАС, угол ВСА. Построить по этим данным треугольник АВС.
Вариант решения.
построение угла, равного данному, стандартный, описан не раз и не является целью решения данной задачи.
От т.А откладываем стандартным угол, равный углу ВАС.
От произвольной точки К на АР откладываем угол, равный углу ВСА. Точку пересечения их сторон обозначим М. На АН от т.А откладываем циркулем АТ=АК , ТЕ=АМ и ЕН=МК; отрезок АН. равен сумме сторон треугольника АМК, т.е. периметру ∆АМК.
Соединим Н и Р. Проведем параллельно НР прямую из т.Т до пересечения с АР, обозначим точку пересечения С. Треугольник АНР и АТС подобны - общий угол и параллельные стороны НР и ТС. Коэффициент подобия равен отношению периметров ОАР1Р и О.
По т.Фалеса параллельные прямые на сторонах угла отсекают пропорциональные отрезки.
АТ:АС=АН:АР. ⇒ АС - сторона искомого треугольника АВС.
От С проведем СВ║КМ. Точку пересечения обозначим В.
∠ВСА=∠МКА как соответственные, угол А - равен данному по построению.
Построенный треугольник АВС равен искомому по стороне и двум углам.
* * *