ответ:Биссектриса делит угол, из которого выходит, пополам. От сюда, можно узнать что углы ∠ABD и ∠DBC=80/2=40°
Рассмотрим треугольник ABD, в нем мы знаем два угла: ADB и ABD. Зная два угла в треугольнике можно найти третий угол, т. к. сумма углов в треугольнике равна 180°. Тогда: 180°-(40°+120°)=20°. Т. е. угол ∠DAB = 20°;
Теперь рассмотрим треугольник ABC, в нем мы теперь знаем два угла: ∠A (равен углу ∠DAB ) и угол ∠B, отсюда можно найти третий угол ∠C: 180°-(20°+80°)=80°.
Рассмотри треугольник DBC, в нем нам известны два угла ∠DBC и ∠C, найдем третий угол: 180°-(40°+80°)=60°.
ответ: В треугольнике CBD углы: ∠CBD=40°, ∠C=80°, ∠CDB=60°.
Условие: На сторонах ВС и CD квадрата ABCD взяли точки K и M так, что ∠MAK = 45°. Известно, что KM = 13 ,KC = 5 ,CM = 12. Найдите сторону квадрата ABCD.
Дано: K ∈ BC, M ∈ CD, ∠MAK = 45°, KM = 13 ,KC = 5 ,CM = 12.
Найти: BC.
Осуществим поворот ΔAMD на 90° против часовой стрелки ⇒ ΔAMD переходит в ΔAM₁B, ΔAMD = ΔAM₁B.
∠BAD = ∠BAK + ∠MAK + ∠MAD = 90° ⇒ ∠BAK + ∠MAD = 90° - ∠MAK = 90° - 45° = 45°
Из равенства ΔAMD = ΔAM₁B следует, что ∠MAD = ∠BAM₁, значит, ∠BAK + ∠BAM₁ = 45°.
ΔMAK = ΔM₁AK по двум сторонам и углу между ними:
AM = AM₁ - так как ΔAMD = ΔAM₁BАК - общая сторона∠MAK = ∠M₁AK = 45°Отсюда следует, что ∠АКМ = АКМ₁.
Аналогичным образом, осуществив поворот ΔAВК на 90° по часовой стрелке, можно утверждать, что ∠AMK = ∠AMD.
Заметим, что биссектрисы АК и АМ внешних углов при вершинах К и М ΔКСМ пересекаются в точке А, то есть точка А является центром вневписанной окружности ΔКСМ ⇒ AB = AD = AH - радиусы вневписанной окружности.
КВ = КН, MD = MH - как отрезки касательныхBC + СD = (BK + CK) + (CM + MD) = (KH + CK) + (CM + MH) = CK + CM + (KH + MH) = CK + CM + MK = 5 + 12 + 13 = 30
BC + СD = 30 ⇒ BC + BC = 30 ⇒ BC = 15
ответ: 15.
17/28-х=3/28+11/28
17/28-х=14/28
х=17/28-14/28
х=3/28.
ответ: х=3/28.