Дано число N=10a+b, причем a=3b⇒N=31b. Поменяв местами цифры, получаем число M=10b+a=13b. По условию N=54M⇒31b=54·13b. Поскольку b - это цифра, такое возможно только если b=0⇒a=0⇒N=0; M=0; N=54M. Скорее всего, автор задания не готов считать число 00 двузначным. Тогда ответ такой: такого числа нет.
Но давайте пофантазируем: может быть автор ошибся, может быть он хотел написать, что второе число не в 54 раза меньше первоначального, а на 54 меньше первоначального. Тогда получается уравнение N=M+54; 31b=13b+54; 18b=54; b=3⇒a=9. То есть первоначальное число - это 93.
Дано число N=10a+b, причем a=3b⇒N=31b. Поменяв местами цифры, получаем число M=10b+a=13b. По условию N=54M⇒31b=54·13b. Поскольку b - это цифра, такое возможно только если b=0⇒a=0⇒N=0; M=0; N=54M. Скорее всего, автор задания не готов считать число 00 двузначным. Тогда ответ такой: такого числа нет.
Но давайте пофантазируем: может быть автор ошибся, может быть он хотел написать, что второе число не в 54 раза меньше первоначального, а на 54 меньше первоначального. Тогда получается уравнение N=M+54; 31b=13b+54; 18b=54; b=3⇒a=9. То есть первоначальное число - это 93.
2.04+0.11 = 2.15
2) Разность:
2.04-0.11 = 1.93
3) Произведение:
2.04*0.11 = 0,2244
4) Частное:
2.04:0.11 = 18,545454... = 18,(54)