М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sasagolyakov
sasagolyakov
18.02.2020 22:49 •  Математика

Один насос работал 12 минут а другой такой же насос 18 минут причём второй насос на качал на 30 вёдер воды больше чем первый сколько вёдер воды накачал каждый насос

👇
Ответ:
sofiyabashkaiki
sofiyabashkaiki
18.02.2020
1) 18-12=6 минут разница.
2) 30:6=5 вёдер качает за минуту.
3) 18*5=90 вёдер накачал второй насос.
4) 12*5=60 вёдер накачал первый насос.
4,4(85 оценок)
Открыть все ответы
Ответ:
pav9
pav9
18.02.2020
А) 690:3*205-47150+850 = 850
Б) (238 145-237 776):41+327:3*7 = 772
В) 10000-120*80+(900-750:25)*7 = 6460

А) 690:3*205-47150+850=850
1) 690 : 3 = 230
2) 230 * 205 = 47150
3) 47150 - 47150 = 0
4) 0 + 850 = 850
ответ: 850

Б) (238 145-237 776):41+327:3*7 = 772
1) 238 145 - 237 776 = 369
2) 369 : 41 = 9
3) 327 : 3 = 109
4) 109 * 7 = 763
5) 763 + 9 = 772
ответ: 772

В) 10000-120*80+(900-750:25)*7 = 6460
1) 750 : 25 = 30
2) 900 - 30 = 870
3) 870 * 7 = 6090
4) 120 * 80 = 9600
5) 10000 - 9600 = 400
6) 6090 + 400= 6460
ответ: 6460
4,6(7 оценок)
Ответ:
gzhanatugan
gzhanatugan
18.02.2020

Существует

Пошаговое объяснение:

На самом деле такое число найдётся для любой натуральной степени 5^k.

Я утверждаю, что для всех k найдётся число, состоящее из k цифр, не содержащее нулей в десятичной записи и делящееся на 5^k.

Доказываем по индукции.

База индукции. Для k = 1 подходит 5^1=1.

Индукционный переход. Пусть длина числа n\cdot5^k равна k, десятичная запись этого числа не содержит нулей. Припишем к этому числу слева ненулевую цифру a и потребуем, чтобы получившееся число делилось на 5^{k+1}.

Получившееся число равно n\cdot5^k+a\cdot10^k=5^k(n+a\cdot2^k), оно будет делиться на 5^{k+1}, если  делится на 5.

2^k при делении на 5 может давать остатки 1, 2, 3 и 4; n может давать любые остатки от 0 до 4. Ниже в таблице я явно выписываю, какие можно взять a для каждой комбинации остатков. Например, если n даёт остаток 3 при делении на 5; 2^k даёт остаток 4 при делении на 2, то можно взять a = 3: тогда n+a\cdot2^k даёт такой же остаток при делении на 5, что и 3+3\cdot4=15.

Таким образом, если для k такое число найдётся, то и для k + 1, а значит, и для всех k, в том числе и для k = 1987.

Вот, например, числа, построенные для k от 1 до 20:

5 25 125 3125 53125 453125 4453125 14453125 314453125 2314453125 22314453125 122314453125 4122314453125 44122314453125 444122314453125 4444122314453125 54444122314453125 254444122314453125 1254444122314453125 21254444122314453125

Например, число 21254444122314453125 делится на 5^{20} и не содержит нулей :)


Существует ли число, не содержащее в записи ни одного нуля и делящееся на 5^1987?
4,8(74 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ