М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Каринэль
Каринэль
28.07.2021 04:26 •  Математика

Сравните дроби 3) 9 / 10 и 17 / 20. с решением.

👇
Ответ:
timon040805
timon040805
28.07.2021
9/10 и 17/20
нужно привести обе дроби к одному знаменателю
первую дробь домножаем на 2 и получается
(9*2)/(10*2) т.е. 18/20
сравниваем дроби
18/20 > 17/20
4,8(28 оценок)
Ответ:
Elizzzabethh
Elizzzabethh
28.07.2021
9\10 и 17\20  общий множитель 20 получается:18\20 и 17\20 
т.к 18\20 больше 17\20.то и 9\10 больше 17\20
4,6(23 оценок)
Открыть все ответы
Ответ:
ketti00000
ketti00000
28.07.2021

\dfrac{267}{7}

Пошаговое объяснение:

Нужно обратить внимание на важные детали, которые влияют на среднее арифметическое:

Уменьшаемые числа (изменяется общая сумма чисел)Количество единиц, которые заменили на нули (изменяется количество чисел)

Пусть x — количество единиц, которые уменьшили, y — количество остальных уменьшенных чисел. Получается, исходная сумма уменьшилась на x и y, а количество чисел — на x. Исходную сумму можно найти их первоначального среднего арифметического: 27 * 20 = 540. Тогда полученное среднее арифметическое:

S=\dfrac{540-x-y}{20-x}=\dfrac{540-x}{20-x}-\dfrac{y}{20-x}. Чтобы это значение было максимальным, в данной разности нужно максимизировать уменьшаемое и минимизировать вычитаемое. Вычитаемое, очевидно, не меньше нуля, а нулём оно может быть только при y = 0, то есть если мы не изменяли числа, большие единицы.

Рассмотрим уменьшаемое: \dfrac{540-x}{20-x}=\dfrac{20-x+520}{20-x}=1-\dfrac{520}{x-20} — это гипербола с отрицательным коэффициентом, то есть возрастающая функция. Значит, количество уменьшаемых единиц должно быть как можно больше (меньше 20).

Теперь вспомним про ограничение на числа: каждое из них не превышает 40. Тогда исходная сумма (если все не единицы заменить на 40) x+40(20-x)\geq 540 \Leftrightarrow x\leq \dfrac{20}{3}\Rightarrow x\leq 6. Значит, максимально возможное значение среднего арифметического достигается при x = 6 и y = 0, а именно S_{\max}=\dfrac{540-6-0}{20-6}=\dfrac{267}{7}.

Действительно, такое значение достигается. Пусть было записано шесть единиц, число 14 и тринадцать чисел 40. Их среднее равно \dfrac{6+14+13\cdot 40}{20}=27. Пусть уменьшили все единицы. Тогда чисел осталось 14, их среднее равно \dfrac{14+13\cdot40}{14}=\dfrac{267}{7}.

4,8(19 оценок)
Ответ:
БлэккКээт
БлэккКээт
28.07.2021

Тело, ограниченное поверхностями x + 2y + z - 2 = 0, x = 0, y = 0, z = 0, это треугольная пирамида, образованная пересечением заданной плоскости трёхгранного угла.

Уравнение плоскости переведём в уравнение "в отрезках".

x + 2y + z = 2. Делим обе части на 2.

(x/2) + (y/1) + (z/2) = 1.

Эти отрезки - координаты вершин на осях.

Находим векторы по координатам точек:

AB = {Bx - Ax; By - Ay; Bz - Az} = {0 - 2; 1 - 0; 0 - 0} = {-2; 1; 0}

AC = {Cx - Ax; Cy - Ay; Cz - Az} = {0 - 2; 0 - 0; 2 - 0} = {-2; 0; 2}

AD = {Dx - Ax; Dy - Ay; Dz - Az} = {0 - 2; 0 - 0; 0 - 0} = {-2; 0; 0}

V =  1/6 |AB · [AC × AD]|

Найдем смешанное произведение векторов:

AB · (AC × AD) =  

ABx ABy ABz

ACx ACy ACz

ADx ADy ADz

 =  

-2 1 0

-2 0 2

-2 0 0

= (-2)·0·0 + 1·2·(-2) + 0·(-2)·0 - 0·0·(-2) - 1·(-2)·0 - (-2)·2·0 = 0 - 4 + 0 - 0 - 0 - 0 =   = -4

Найдем объем пирамиды:

V =  1/6 · 4  =    2/ 3  

4,4(11 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ