Для начала поработаем со вторым выражением. Первые три слагаемых свернем в квадрат разности: ; В следующих двух слагаемых вынесем общий множитель "40": ; В итоге получим следующее уравнение: . В скобках мы видим похожие выражения, отличающиеся лишь знаком посередине (такие выражение называются сопряженными). А хотелось бы видеть там равные (строго говоря тождественные) выражения. Пусть в первой скобке вместо будет стоять ; Это приведет к тому, что придется убавить ; В итоге: ; Слева стоит квадрат суммы. Уравнение примет вид: ; Сворачивая еще раз: ; Получаем серию прямых: ; А теперь приступим к рассмотрению первого уравнения.
Это уравнение задает круг с центром в точке (0, 0) и радиусом ; Рассмотрим прямую ; Найдем радиус окружности с центром в начале координат, которая касается данной прямой. Это легко сделать из подобия треугольников. ; Значит, круг касается всех этих четырех прямых. Достаточно найти только координаты касания с любой из прямых. Это делается так же, как и находился радиус окружности. Для той же прямой это координаты ; Ну а все решения:
ответ: сторона квадрата равна 22.
Пошаговое объяснение:
Пусть сторона квадрата равна х. Если одну из сторон квадрата увеличить на 5, а соседнюю уменьшить на 3, то получим прямоугольник со сторонами х+5 и х-3.
Площадь квадрата равна: S=х²
Площадь прямоугольника равна: (х+5)(х-3) и на 29 больше площади квадрата.
Составим и решим уравнение:
(х+5)(х-3)-х²=29
х²+5х-3х-15-х²=29
2х-15=29
2х=29+15
2х=44
х=44:2
х=22 - сторона квадрата.
Проверим:
Площадь квадрата: 22²=484
Площадь прямоугольника: (22+5)(22-3)=27*19=513
513-484=29
потому что четырехзначное число, а 7>6