19/30 или 0.63
Пошаговое объяснение:
1. Вычисляем сумму. (-5+8)+(-0,36+(-0,64))-1 2/3
Получаем : 3+(-0,36+(-0,64))-1 2/3
2. Когда перед выражением в скобках стоит знак "+", тогда оно остается прежним. 3+(-0,36+(-0,64))-1 2/3
Получаем : 3+(-0,36-0,34)-1 2/3
3. Представляем смешанную дробь виде неправильной дроби. 3+(-0,36-0,34)-1 2/3
Получаем : 3+(-0,36-0,34)- 5/3
4.Вычисляем разность 3+(-0,36-0,34)- 5/3
Получаем : 3+(-0,7)- 5/3
5. Раскрываем скобки (не забываем, что когда перед выражением в скобках стоит знак "+", тогда оно остается прежним). 3+(-0,7)- 5/3
Получаем : 3-0,7- 5/3
6. Вычисляем разность 3-0,7- 5/3
Получаем : 19/30 или 0.63
Чтобы составить канонические уравнения прямой, нужно знать точку и направляющий вектор. А у нас даны уравнения двух плоскостей:
{5x + 3y + z - 18 = 0
{ 2y + z - 9 = 0.
Пусть x = 0 , тогда получаем систему двух линейных уравнений с двумя неизвестными:
{3y + z - 18 = 0
{2y + z - 9 = 0.
Вычтем из первого уравнения второе.
у - 9 = 0. Найдена координата у = 9.
Тогда z = -2y + 9 = -2*9 + 9 = -9.
Получили точку на заданной прямой: (0; 9; -9).
Находим направляющий вектор прямой как результат векторного умножения нормальных векторов заданных плоскостей.
i j k | i j
5 3 1 | 5 3
0 2 1 | 0 2. Применим треугольную схему.
3i + 0 + 10 k - 5j - 2i - 0 = 1i - 5j + 10к.
Направляющий вектор равен (1; -5; 10).
Теперь можно составить каноническое уравнение прямой.
(x /1) = (y - 9)/(-5) = (z + 9)/10.
Если каждый член этого уравнения приравнять t, то получим параметрические уравнения прямой.
{x = t,
{y = -5t + 9,
{ z = 10t - 9.
в город