У куба всего шесть граней. Значит, имеется три пары противоположных граней, где в каждой паре числа на гранях отличаются в 1,5 раза Пусть в первой паре это числа а и 1,5а, во второй паре в и 1,5в, в третье паре с и 1,5с Сумма чисел в вершинах равна сумме чисел на гранях. Приравняем эту сумму числу 2016. а + 1,5а + в + 1,5в + с + 1,5 с = 2016 а + в + с + 1,5а + 1,5в + 1,5с = 2016 а + в + с + 1,5(а + в + с) = 2016 (а + в + с)•(1 + 1,5) = 2016 (а + в + с) • 2,5 = 2016 а + в + с = 2016 : 2,5 а + в + с = 806,4 Этого не может быть, поскольку в вершинах записаны натуральные числа, следовательно их сумма на каждой из гранях также является натуральным числом, и, соответственной сумма чисел на любых гранях также должна быть натуральным числом и не может быть дробью. ответ: нет, не может.
за 7,5 мин ? куб.м, но 2/3 бассейна за 5 мин ?, куб.м, но осталось 20 куб.м емкость бассейна ---? Решение. Примем емкость бассейна за Х куб.м. 1). 5 :7,5 = 2/3 (части) доля объема воды, выкачиваемого за 5 мин от объема, выкачиваемого за 7,5 мин. 2). (2/3)*Х*(2/3) = (4/9)Х объем выкаченной за 5 мин воды. 3). Х - (4/9)Х = (5/9)Х объем оставшейся в бассейне воды после 5 мин работы насоса. Т. к. по условию после 5 мин работы насоса воды осталось 20 куб.м, составим и решим уравнение: (5/9)Х = 20; Х = (20:5)*9 = 36(куб.м) ответ: Объем бассейна составляет 36 куб.м. Проверка: 36*(2/3) = 24(куб.м) выкачивают за 7, 5 мин; (24:7,5)*5=16(куб.м) выкачали за 5 мин; 36 -16 =20(куб.м) остается после 5 минут работы насоса, что соответствует условию.
(254+781)-делимое
(97-92)-делитель
б) (3-а):m
(3-а)-делимое
m-делитель
Делимое это то,что делят,а делитель то,на что делят.