53 ореха
Пошаговое объяснение:
Сумма цифр на орехах может быть числом от 1 (орех 100) до 27 (орех 999).
То есть всего 27 вариантов.
Отметим, что сумма цифр равная 1 и 27 встречается всего лишь по разу. Остальные суммы встречаются на 3 и более орехах (например, 2 - это орехи 101, 110 и 200. 26 - это орехи 899, 989 и 998)
Самая плохая ситуация, которая возможна и не удовлетворяет нужным условиям - это вытащенные орехи 100 и 999, а также по 2 ореха с суммами от 2 до 26 (2*25=50 орехов). Итого - 50+2=52 ореха.
И любой следующий, т.е. 53тий орех даст нужную тройку повторов.
Отсюда ответ:
53 ореха
Для начала переведём все числа в неправильные дроби умножив знаменатель на целое число, а затем прибвавим числитель (для примера 1(целая) и 1/2 - это 2 умножить на 1 и +1. Получается 3/2).
13/5:(n+17/14)-7/5=1/3
Перенесём 1/3 в левую часть:
13/5:(n+17/14)-7/5-1/3=0
Приведём к общему знаменателю:
13/5:(n+17/14)-21/15-5/15=0
13/5:(n+17/14)-26/15=0
То же самое делаем с n:
13/5:((14n+17)/14)-26/15=0
Пользуемся свойством деления дробей (a/b:c/d=a/d*d/c):
13/5*(14/14n+17)-26/15=0
(182/(70n+85))-26/15=0
Накрест умножаем, перенеся в левую часть:
182*15=1820n+2210
n=2/7
х+2х+2х-12=48
5х=60
х=60/5
х=12примеров -в 1 день
2*12-12=24-12=12-в третий