Задание 1. Всего количество чисел от 10 до 60 - 60-9=51. Среди них, количество чисел, делящихся на 4 равно 13 (12;16;20;24;28;32;36;40;44;48;52;56;60)
Искомая вероятность : P=13/51 ≈ 0.25
Задание 2. Выбрать один белый шар можно а два черных шара - По правилу произведения, вынуть один белый шар и два черных шара можно кол-во благоприятных событий)
Количество все возможных событий:
Искомая вероятность:
Задание 3. Выбрать одного мужчину можно а трёх женщин - И тогда выбрать делегацию из четырёх человек(1 мужчина и 3 женщин) можно
Количество все возможных событий:
Искомая вероятность
Задание 4. Число испытаний: n=3, вероятность успеха - 0,8, вероятность неудачи - q=1-0.8=0.2. Искомая вероятность по формуле Бернулли:
Задание 5.
Задание 6. В таблице вероятности сумма вероятностей должна равняться 1, то есть
Задание 1. Всего количество чисел от 10 до 60 - 60-9=51. Среди них, количество чисел, делящихся на 4 равно 13 (12;16;20;24;28;32;36;40;44;48;52;56;60)
Искомая вероятность : P=13/51 ≈ 0.25
Задание 2. Выбрать один белый шар можно а два черных шара - По правилу произведения, вынуть один белый шар и два черных шара можно кол-во благоприятных событий)
Количество все возможных событий:
Искомая вероятность:
Задание 3. Выбрать одного мужчину можно а трёх женщин - И тогда выбрать делегацию из четырёх человек(1 мужчина и 3 женщин) можно
Количество все возможных событий:
Искомая вероятность
Задание 4. Число испытаний: n=3, вероятность успеха - 0,8, вероятность неудачи - q=1-0.8=0.2. Искомая вероятность по формуле Бернулли:
Задание 5.
Задание 6. В таблице вероятности сумма вероятностей должна равняться 1, то есть
Входные данные:
{(a '(b)) / b - a (b) ^ 2 - cos (2 b) = 0, a (0) = -4}
Уравнение Риккати:
a '(b) = ba (b) ^ 2 + b cos (2 b)
Альтернативные формы:Больше
{a (b) ^ 2 + cos (2 b) = (a '(b)) / b, a (0) = -4}
{(a '(b) - ba (b) ^ 2 - b cos (2 b)) / b = 0, a (0) = -4}
{- (- a '(b) + ba (b) ^ 2 + b cos (2 b)) / b = 0, a (0) = -4}
Альтернативная форма, предполагающая, что b является положительным:
{b (a (b) ^ 2 + cos (2 b)) = a '(b), a (0) = -4}
Пошаговое объяснение: