Если при делении порядкового номера места на 4 получается целое число, то это место находится в купе, номер которого равен получившемуся числу. Если же при делении получается неполное частное, то номер купе будет на 1 (единицу) больше, чем это неполное частное. 1) 21:4=5 (ост.1)21-ое место находится в 6-ом купе 2) 15:4=3 (ост.3)15-ое место находится в 4-ом купе 3) 28:4=728-ое место находится в 7-ом купе 4) 18:4=4 (ост.2)18-ое место находится в 5-ом купе 5) 26:4=6 (ост.2)26-ое место находится в 7-ом купе, остальные номера мест в этом купе 25, 27 и 28.
Диагональ боковой грани данной призмы рассекает боковую грань на два прямоугольных треугольника, одна из сторон которого является стороной основания. Мы можем найти эту сторону (обозначим её как а ) путём расчёта треугольника через 1 сторону и прилежащие к ней углы. Формула площади треугольника через углы и сторону такова: S= 1/2 а² × (sin Alpha × sin Beta) /sin Yamma - а именно, если известна одна сторона треугольника и два прилежащих к ней угла, то S данного треугольника равна половине квадрата данной стороны умноженная на дробь, в числителе которой, произведение синусов прилежащих углов, а в знаменателе синус противолежащего угла. По условию задачи нам известна не сторона, а площадь - она равна половине площади боковой грани, то есть 1/2 Q. Также нам известны углы высеченного диагональю боковой грани треугольника. Они равны : Alpha, 90° (так как призма правильная) и 90°- Alpha (третий угол равен 180°- Alpha - 90°) Подставим значения в формулу: 1/2 Q = 1/2 а² × sin Alpha × sin 90° / sin (90°-Alpha) Q=a² × sin Alpha ×1 / sin (90°-Alpha) a= √ (Q × sin (90°-Alpha) / sin Alpha) Таким образом мы нашли сторону основания призмы. Используя ту же формулу площади треугольника по 1 стороне и углам, найдём площадь основания. Треугольник в основании призмы правильный - то есть, все его углы и стороны равны. Значит все углы в нём равны 180°:3=60° Sосн. =(Q × sin (90°-Alpha) / sin Alpha) × (sin 60°)² / sin 60° S осн.= (Q × sin (90°-Alpha) / sin Alpha) × √3/2 Теперь можно записать площадь призмы. Она равна сумме тройной площади боковой грани и двойной площади основания. S полной поверхности призмы = 3Q + Q × sin (90°-Alpha) / sin Alpha × √3