Вычислите площадь четырёхугольника abcd, если ширина прямоугольника abcd равна 2 см, а длина - 4 см. известно, что площадь треугольника ced равна 6 см2 .
1.Чтобы доказать первое утверждение составим числовое выражение согласно условиям утверждения: В этом выражении деление на повторяется, поэтому вынесем это действие за скобку. Получим такое числовое выражение: И решим его: В ответе у нас получилось целое число. Значит можно считать утверждение "если каждое из двух чисел делится на , то и их сумма делится на .
2.Для доказательства второго утверждения составим числовое выражение соответствующее условиям утверждения: Вынесем общий делитель за скобку: Решим получившееся выражение: Так как число в ответе целое можно считать утверждение "если одно из двух чисел делится на ,то их произведение делится на " доказанным.
Где a - первый член прогресии, n - количество членов, а d - разность прогрессии. --------------------------------- В процессе разбора решения, я придумал интересный может, конечно, не столь продуктивный, как обычная формула арифмитичечкой прогресии, но тоже весьма любопытный. 1+2...+100. Что это вообще такое? Мы можем разбить числа на пары, которые будут давать в сумме всегда 100, т.е. 1+99 2+98 и это будет продолжаться до тех пор, пока мы не подойдем к 50, последняя пара 49+51. У нас останутся два числа 50 и 100 и 49 пар по 100 Несложно посчитать, что 49*100+50+100= 5050.
6-2=4(см)
ответ:4см