Розв'язування: За умовою задачі AB||CD і ∠BAO=300, ∠OCD=500.
З точки O (вершини кута AOD) проведемо промінь OK так, що AB||OK, OK||CD.
(За теоремою: якщо дві прямі паралельні третій, то вони паралельні між собою).
Тоді отримаємо, ∠AOC=∠AOK+∠KOC (градусна міра кута рівна сумі градусних мір кутів, на які він ділиться будь-яким променем, що проходить між його сторонами).
∠BAO, ∠AOK є внутрішніми різносторонніми кутами при паралельних прямих AB і OK та січній AO, тому за теоремою, ∠AOK=∠BAO=300.
∠KOC, ∠OCD є внутрішніми різносторонніми кутами при паралельних прямих OK і CD та січній OD, тому за теоремою, ∠KOC=∠OCD=500.
Отже, отримаємо ∠AOC=∠AOK+∠KOC=300+500=800.
Відповідь: 800 –В.
1) Пусть уроков было N. Пусть Петя победил a раз, Коля b раз, Вася c раз.
Пусть Петя пропустил 1 урок, то есть был на N-1 уроке. Тогда:
Петя получил 4a + 1*(N-1-a) = N + 3a - 1 = 29 конфет.
Коля получил 4b + 1*(N-b) = N + 3b = 32 конфеты
Вася получил 4c + 1*(N-c) = N + 3c = 37 конфет
Из 1 уравнения получаем:
N + 3a = 30, N = 30 - 3a = 3(10 - a), то есть N кратно 3.
Тогда N - 3b и N - 3c тоже были бы кратны 3, но этого нет.
Значит, урок пропустил НЕ Петя.
Пусть урок пропустил Коля. Тогда получится:
Петя получил 4a + 1*(N-a) = N + 3a = 29 конфет.
Коля получил 4b + 1*(N-1-b) = N + 3b - 1 = 32 конфеты
Вася получил 4c + 1*(N-c) = N + 3c = 37 конфет
Тогда из 2 уравнения N + 3b = 33; N = 33 - 3b = 3(11 - b).
Получаем тоже самое: из 2 уравнения N кратно 3, а из 1 и 3 - нет.
Значит, урок пропустил Вася.
Петя получил 4a + 1*(N-a) = N + 3a = 29 конфет.
Коля получил 4b + 1*(N-b) = N + 3b = 32 конфеты
Вася получил 4c + 1*(N-1-c) = N + 3c - 1 = 37 конфет
Теперь из 3 уравнения: N = 38 - 3c, N на 3 не делится, все сходится.
Если написать 4 уравнение: a + b + c = N, то получаем систему:
{ N + 3a = 29
{ N + 3b = 32
{ N + 3c = 38
{ a + b + c = N
Но из этой системы получается N = 99/6 = 16,5, что невозможно.
Так что в задаче ошибка, но тем не менее
ответ: урок пропустил Вася.
2) Я не знаю, как это доказать, с геометрией у меня сложности.
3) Это намного проще, чем 1)
494 = 2*13*19 = 13*38
Это число 138.