Очевидно, что здесь график будет основан на параболе.
Сейчас посмотрим, что будет при раскрытии модуля
\displaystyle |x-3| = \left \{ {{x-3,x>3} \atop {3-x, x<3}} \right.∣x−3∣={
3−x,x<3
x−3,x>3
Не стал рассматривать x=3x=3 , потому что он в знаменателе дроби.
При положительном раскрытии дробь равна 1, при отрицательном раскрытии дробь равна -1.
Итого имеем:
\displaystyle y=\left \{ {{x^2-6x+1+3, x>3} \atop {x^2-6x-1+3, x<3}} \right.y={
x
2
−6x−1+3,x<3
x
2
−6x+1+3,x>3
То есть \displaystyle y=\left \{ {{x^2-6x+4, x>3} \atop {x^2-6x+2, x<3}} \right.y={
x
2
−6x+2,x<3
x
2
−6x+4,x>3
Чтобы было удобно строить, выделим полный квадрат и увидим, что оба куска различаются лишь расположением по оси ОУ, а так та же парабола.
\displaystyle y=\left \{ {{x^2-6x+9-9+4=(x-3)^2-5, x>3} \atop {x^2-6x+9-9+2=(x-3)^2-7, x<3}} \right.y={
x
2
−6x+9−9+2=(x−3)
2
−7,x<3
x
2
−6x+9−9+4=(x−3)
2
−5,x>3
То есть оба куска смещены по оси ОХ на 3 единицы вправо, а смещение по ОУ зависит от самого куска: левый кусок (x<3)(x<3) смещен на 7 единиц вниз, а правый (x>3)(x>3) - на 5 единиц вниз.
Кстати, в x=3x=3 - разрыв, поэтому на графике будут две выколотые точки - слева и справа.
Сам график строится так:
Строятся полностью оба куска (довольно легко, по факту из новой точки - в 1-ом куске (3;-5), во 2-м (3;-7) строим самые параболы y=x^2y=x
2
, ну то есть мысленно представляем, что, например, точка (3;-5) является началом координат и от неё параболку шаблонную строим с заученной наизусть таблицей) и на каждом интервале остается только та часть, которая указана в системе.
Картинка 1 - два графика разным цветом
Картинка 2 - итоговый график, то есть после того, как ненужные части были убраны и был добавлен раздел.
f(x) = (х + 2)(х - 3)(х - 5)
Областью определения этой функции является множество всех чисел. Нулями функции служат числа -2, 3, 5. Они разбивают область определения функции на промежутки
(
−
∞
;
−
2
)
,
(
−
2
;
3
)
,
(
3
;
5
)
и
(
5
;
+
∞
)
Выясним, каковы знаки этой функции в каждом из указанных промежутков.
Выражение (х + 2)(х - 3)(х - 5) представляет собой произведение трех множителей. Знак каждого из этих множителей в рассматриваемых промежутках указан в таблице:
(
−
∞
;
−
2
)
(
−
2
;
3
)
(
3
;
5
)
(
5
;
+
∞
)
x+2 – + + +
x-3 – – + +
x-5 – – – +
Отсюда ясно, что:
если
x
∈
(
−
∞
;
−
2
)
, то f(x)<0;
если
x
∈
(
−
2
;
3
)
, то f(x)>0;
если
x
∈
(
3
;
5
)
, то f(x)<0;
если
x
∈
(
5
;
+
∞
)
, то f(x)>0.
Мы видим, что в каждом из промежутков
(
−
∞
;
−
2
)
,
(
−
2
;
3
)
,
(
3
;
5
)
,
(
5
;
+
∞
)
функция сохраняет знак, а при переходе через точки -2, 3 и 5 ее знак изменяется.
-2 3 5
Вообще пусть функция задана формулой
f(x) = (x-x1)(x-x2) ... (x-xn),
где x–переменная, а x1, x2, ..., xn – не равные друг другу числа. Числа x1, x2, ..., xn являются нулями функции. В каждом из промежутков, на которые область определения разбивается нулями функции, знак функции сохраняется, а при переходе через нуль ее знак изменяется.
Это свойство используется для решения неравенств вида
(x-x1)(x-x2) ... (x-xn) > 0,
(x-x1)(x-x2) ... (x-xn) < 0,
где x1, x2, ..., xn — не равные друг другу числа
Рассмотренный решения неравенств называют методом интервалов.
Приведем примеры решения неравенств методом интервалов.
Решить неравенство:
x
(
0
,
5
−
x
)
(
x
+
4
)
<
0
Очевидно, что нулями функции f(x) = x(0,5-x)(x+4) являются точки
x
=
0
,
x
=
1
2
,
x
=
−
4
Наносим на числовую ось нули функции и вычисляем знак на каждом промежутке:
-4 0 0,5
Выбираем те промежутки, на которых функция меньше нуля и записываем ответ.
x
∈
(
−
4
;
0
)
∪
(
0
,
5
;
+
∞
)
или
−
4
<
x
<
0
;
x
>
0
,
5
Решить неравенство:
x
+
2
x
−
1
≤
2
x
+
2
x
−
1
≤
2
⇒
x
+
2
−
2
(
x
−
1
)
x
−
1
≤
0
⇒
−
x
+
4
x
−
1
≤
0
Наносим на числовую ось нули и точки разрыва функции:
1 4
Выбираем те промежутки, на которых функция меньше или равна нулю и записываем ответ.
x
∈
(
−
∞
;
1
)
∪
[
4
;
+
∞
)
или
x
<
1
;
x
≥
4