Найдем производную, приравняем ее к нулю. найдем критические точки, разобьем область определения функции на промежутки и установим знак на каждом из них. где производная больше нуля - там функция возрастает, где она меньше нуля. функция убывает. при переходе через критическую точку : если производная меняет знак с плюса на минус, то это точка максимума, с минуса на плюс - точка миниимума, а значения функции в этих точках - соответственно максимум и минимум.
f'(x)=(x³/3+x²-3x-1)'=x²+2x-3
x²+2x-3=0 По Виету х=-3, х=1, неравенство решим методом интервалов (х+3)(х-1)<0
-31
+ - +
На промежутках (-∞;-3] и [1;+∞) функция возрастает, а на
[-3;1] убывает. Точка х= -3 - точка максимума, а х=1- точка минимума, максимум равен -27/3+9+9-1=8; минимум равен
1/3+1²-3-1-2 2/3
2) 5 * 2 = 10(см) - диаметр 2-ой окружности
3) 6 + 10 = 16(см) - сумма двух диаметров
4) 18 - 16 = 2(см) - кратчайшее расстояние между окружностями
5) 3 + 2 + 5 = 10(см)
ответ: 10 см - расстояние между центрами окружностей.