5 в кубе=5*5*5*5*5=3125 3125*29/87*25 Сокращаем 3125 и 25 на 25 и 87 и 29 на 29 Получается: 125*1/3*1 При сокращении получается 125/3 Если нужно смешанное число, то она такое: 41 целая 2/3
Проверяем при n=1 слева только первое слагаемое 1 , справа 1·(2·1-1)=1 1=1 Предположим, что равенство верно при n=k 1+5+9++(4k-3)=k(2k-1) и используя это равенство докажем, что верно при n=k+1
1+5+9++(4k-3)+(4k+4-3) =(k+1)(2k+2-1) (**)
Для доказательства возьмем левую часть сведем к правой. Заменим в левой части последнего равенства 1+5+9++(4k-3) на k(2k-1).
Получим k(2k-1) + (4k+4-3)= упростим=2k²-k+4k+1=2k²+3k+1=(k+1)(2k+1) А это и есть правая часть равенства ( **) Согласно принципа математической индукции равенство верно для любого натурального n.