1. Знайдіть корінь рівняння
7х -30 = 24-х
8х=54
Х=54/8
х=6,75
2. Знайдіть суму коренів рівнянь
5х+10 = 15х+40
-10х=30
х=-30/10
х=-3
2(-5х+10) = 80
-10х+20=80
-10х=60
х=-60/10
х=-6
-3+(-6)=-9
3. Знайдіть добуток коренів рівнянь
5х+6 = 6 - 5х
5х+5х=6-6
10х=0
х=0
0,13(9,8х+5,4)+1,2(4,5х+і) = 15.
Добуток двох множників один з яких дорівнює 0, дорівнює 0, значить добуток коренів двох рівнянь дорівнює 0.
3. Чому дорівнює 5х, якщо 2(х - 5)+Зх = 15?
2х-10+3х=15
5х=25
5. Яке з наведених рівнянь має найбільший корінь? Напишіть розв′язок
А) 7(х-2) = х-2;
7х-14=х-2
7х-х=14-2
6х=12
х=2
Б) 6х-3 = х-1,5
6х-х=3-1,5
5х=1,5
х=0,3
В) 11х - 5 = 10(х-4)
11х-5=10х-40
11х-10х=-40+5
Х=-35
Г) 4(х+0,5) = х-0,7
4х+2=х-0,7
4х-х=-2-0,7
3х=-2,7
х=-0,9
-35 -0,9 0,3 2
Найбільший корінь А) х=2
6. У трьох рядах 100 кущів смородини. У другому ряду кущів смо¬родини в 3 рази більше, ніж у першому, а в третьому — на 5 ку¬щів менше, ніж у першому. Скільки кущів смородини в кожно¬му з рядів? якщо через х позначено число кущів у першому ряду?Напишіть розв′язок
В) х+х-5+х:3 = 100
2х+ х/3=100+5
2х*3+(х/3)*3=105*3
6х+х=315
х=315/7
х=45
Достатній рівень навчальних досягнень
7. Розв'яжіть рівняння 9 (Зх - 2) - 6 = 5(4х -1)+2.
27х-18-6=20х-5+2
27х-20х=-5+2+18+6
7х=21
х=3
8. В одному ящику було в 7 разів більше апельсинів, ніж у другому. Коли з першого ящика взяли 38 апельсинів, а з другого — 14, то в другому залишилося на 78 апельсинів менше, ніж у першому. Скільки апельсинів було в кожному ящику спочатку?
Нехай у другому ящику х апельсинів, тоді у першому 7х апельсинів. З першого ящика взяли 38 апельсинів 7х- 38, а з другого 14,тобто х-14. В другому ящику на 78 апельсинів менше ніж в першому 7х-38-78=х-14.
7х-38-78=х-14
7х-х=38+78-142
6х=102
х= 17
В другому ящику було 17 апельсинів, у першому було 17*7=119 апельсинів.
Відповідь: у першому ящику 119 апельсинів, у другому ящику 17 апельсинів.
Високий рівень навчальних досягнень
9. Розв'яжіть рівняння
6+(|0,4x-7,5|):0,7= 7
6*0,7+(|0,4x-7,5|):0,7*0,7=7*0,7
4,2+(|0,4x-7,5|)=4,9
(|0,4x-7,5|=4,9-4,2
|0,4x-7,5|=0,7
0,4x=0,7+7,5
0,4х=8,2
Х1= 20,5
0,4x-7,5=-0,7
0,4х=7,5-0,7
0,4х=6,8
Х2=17
Введемо поняття первісної функції та невизначеного інтеграла, розглянемо основні іх властивості.
Функція F(x) називається первісною функції f(x) на даному проміжку, якщо для будь-якого x з цього проміжку F‘(x) = f(x).
Наприклад
Перевірити, чи буде функція F(x)=sinx+2,5x2 первісною функції f(x)= cosx+5х на множині дійсних чисел?
Знайдемо похідну функції F(x), F‘(x) = cosx+2,5*2х, отже F(x) називається первісною функції f(x) на множині дійсних чисел
Основна властивість первісної
Якщо функція F(x) є первісною для функції f(x) на даному проміжку, а C – довільна стала, то F(x)+C є також первісною для функції f(x), при цьому будь-яка первісна для функції f(x) на даному проміжку може бути записана у вигляді F(x)+C , де С – довільна стала.
Первісна
Графіки будь-яких первісних одержуються один з одного паралельним перенесенням уздовж осі ОУ.
Наприклад, розв’яжемо задачу:
Для функції f(x)=–x2+3x обчисліть первісну, графік якої проходить через точку М(2;-1).
Розв’язання
Знайдемо загальний вигляд первісної даної функції:
F(x)=-x3/3+3 x2/2 +С. (1)
Оскільки графік шуканої первісної задовольняє рівнянню (1), підставимо в рівняння замість аргументу значення 2, замість функції значення -1, матимемо:
-1=-8/3+6 +С,
Отже С=-13/3.
Шукана первісна матиме вигляд: F(x)=-x3/3+3 x2/2 -13/3
Невизначений інтеграл
Первісна. Інтеграл
Таблиця первісних (невизначених інтегралів)
Первісна. Таблиця інтегралів
Приклади знаходження невизначених інтегралів:
Первісна. Інтеграл
ІНТЕГРАЛПЕРВІСНАПОЧАТКИ АНАЛІЗУФУНКЦІЯ
Навігація по записам
ПОПЕРЕДНІЙ ЗАПИС
Похідна функції, її геометричний та механічний зміст
НАСТУПНИЙ ЗАПИС
Геометричний зміст і означення визначеного інтеграла
ЗАЛИШИТИ ВІДПОВІДЬ
Ваша e-mail адреса не оприлюднюватиметься. Обов’язкові поля позначені *
Коментар
Ім'я *
Email *
Сайт
Цей сайт використовує Akismet для зменшення спаму. Дізнайтеся, як обробляються ваші дані коментарів.
ТЕСТИ ЗНО ОНЛАЙН
На сайті osvita.ua можна пройти тестування ЗНО за текстами попередніх років онлайн
Тематичні тренувальні тести для підготовки до ЗНО з математики
ОСТАННІ ПУБЛІКАЦІЇ
Первісна та інтеграл
09.05.2020
Логарифмічні рівняння та нерівності
09.05.2020
Показникові рівняння та нерівності
07.05.2020
Куля і сфера
16.04.2020
Дослідження функції за до похідної у завданнях з параметрами
Пошаговое объяснение:
площадь боковой поверхности равна S=pi*(r1+r2)*l
l это образующая конуса. находим ее по теореме пифагора, она является гипотенузой в прямоугольном треугольнике с катетами 3 и 4 .
l= √(3^2+4^2)=5
S=pi(3+6)*5=45pi