Действовать будем так: найдем производную функции по х и по у, приравняем их к 0, составим систему и найдем решение. Это решение будет стационарной точкой
стационарная точка - (0,4;2)
Далее необходимо определить характер этой самой точки - максимум это, или минимум. Для этого составим матрицу из вторых производных и проверим ее главные миноры. Так как у нас функция 2 переменных, то матрица будет размерности 2*2, следовательно, главные миноры - это вторая производная по хх, и определитель всей матрицы. Если определитель матрицы положительный, то экстремум существует и его характер проверяется по знаку второй производной по хх, если отрицательный, то экстремума нет.
Как видно, определитель матрицы меньше 0, поэтому глобального экстремума нет
g+426=868
g=869-426
g=442
б) g*100=3437+1563
g*100=5000
g=5000:100
g=50
в)f+426=217*4
f+426=868
f=869-426
f=442
г)f*10=3437+1563
f*10=5000
f=5000:10
f=500