Если исходить из классического определения луча, как геометрического множества точек прямой, лежащих по одну сторону от данной точки, и рассматривая данную задачу для лучей, лежащих на одной плоскости α, то 1) непересекающиеся лучи (не имеющие общих точек) должны быть параллельны друг другу, могут быть однонаправленными или разнонаправленными, и построить их можно бесконечное (математически) множество - пример на прилагаемом рис обозначен красным цветом; 2) пересекающиеся под прямым углом лучи будут иметь общую точку O, причём угол между ними будет составлять 90° и построить таких лучей также можно беконечное множество - пример на прилагаемом рис обозначен зелёным цветом.
1) Пусть количество джипов=х, тогда после обмена количество джипов сократилось на 10% , т.е. стало 100%-10%=90% =0,9х (90%:100%=0,9) джипов. 2) Количество джипов и спорткаров вначале было поровну, т.е. х. После обмена количество спорткаров увеличилось на 25 %, т.е. стало 100%+25%=125%=1,25х (125%:100%=1,25) спорткаров. 3) Спорткаров стало больше, чем джипов на 14 штук: 1,25х-0,9х=14 0,35х=14 х=40 (спорткаров и 40 джипов было изначально). 4) Посчитаем количество спорткаров после обмена: 1,25х=1,25*40=50 ответ: после обмена у Сидорова стало 50 спорткаров.
2-ой 6а-4,5-5b+10
3-ий 0,9а-0,6+b+2