Ксюша вырезала из бумаги несколько пятиугольников и шестиугольников. Всего у вырезанных фигурок 39 вершин. Сколько пятиугольников вырезала Ксюша?
Запиши решение и ответ.
Пояснение.
Предположим, что шестиугольник только один. Тогда количество вершин у пятиугольников равно 39 − 6 = 33. Этого не может быть, потому что число 33 на 5 не делится.
Если шестиугольников два, то количество вершин у пятиугольников равно 39 − 12 = 27, чего быть не может.
Если шестиугольников три, то количество вершин у пятиугольников равно 39 − 18 = 21, чего не может быть.
Если шестиугольников четыре, то количество вершин у пятиугольников равно 39 − 24 = 15. Значит, может быть 3 пятиугольника.
Если шестиугольников пять, то количество вершин у пятиугольников равно 39 − 30 = 9, чего не может быть.
Больше пяти шестиугольников быть не может.
Допускается другая последовательность действий и рассуждений, обоснованно приводящая к верному ответу.
ответ: 3.
Пошаговое объяснение:
ответ: 3.
Пошаговое объяснение:
количество вершин у пятиугольников равно 33 − 6 = 27. Этого не может быть, потому что число 27 на 5 не делится
Если шестиугольников два, то количество вершин у пятиугольников равно
33 −12 = 21, чего не может быть.
Если шестиугольников три, то количество вершин у пятиугольников равно
33 −18 = 15. Значит, пятиугольников может быть три.
Если шестиугольников четыре, то количество вершин у пятиугольников равно
33 − 24 =9, чего не может быть.
Если шестиугольников пять, то количество вершин у пятиугольников равно
33 −30 = 3, чего не может быть.
Сектор больше - длина окружности больше -
L = 2πR*α
- больше угол α ⇒ больше длина окружности
-, а высота конуса меньше - это катет треугольника где гипотенуза R/
Вычислить высоту конуса можно по теореме Пифагора.
h² = R² - r²