Пошаговое объяснение:
во всех случаях пользуемся формулой
f(x₀+ Δx) ≈ f(x₀) + f'(x₀)*Δx
теперь надо просто найти "хорошие" х₀ и Δх
в первом случае
х₀ = 45°; Δх = 1° = π/180
вот теперь вычисляем
sin 46° = sin (45° + 1°).
f'(x) = (sin x)' = cos x
sin 46° ≈ sin 45° + cos(45°) * π/180 = 1/√2 + (1/√2) * π/180 =
= (1 + π/180) / √2 ≈ (1 + 3.14/180) / 1.41 ≈ 0.7216 ≈ 0.72
во втором случае х₀ = 216; Δх = 71
f'(∛x) = 1/ 3*∛x²
f(∛216) = 6
f'(∛216) = 1/3*∛216²
дальше по формуле вычисляем
в третьем случае х₀ = 0,5; Δх = 0,01
f'(arccos x) = -1 /√(1-x²)
ну и дальше по формуле
6ax+2x-3a^3-6a^2-2a=(6a+2)*x + (-2a^3-3a^2)
6a+2=-1 (т.к. y=-1*x+5, k=-1)
6a=-3, a=-1/2
свободный член равен: -2*(1/8) - 3*(1/4) = -1/4 - 3/4 = -4/4=-1
Абсцисса точки касания = -1/2