обозначим т.О - центр окружности. Рассмотрим треугольник АОВ. Он равнобедренный, так как его стороны равны радиусу окружности. Расстояние от т.О до хорды АВ - это высота этого треугольника, а значит и медиана. Обозначим Р - пересечение высоты с АВ. Из прямоугольного треугольника ОРА находим гипотенузу, которая является радиусом окружности: r=√(10²+24²)=√676=26.
Рассматривая аналогичный прямоугольный треугольник, только построенный на хорде СD, найдем катет, который является высотой равнобедренного треугольника СOD, тем самым является искомым расстоянием до хорды CD:
h=√(26²-24²)=√100=10.
ответ: расстояние до хорды CD
Пошаговое объяснение:
8х-5х=6+3
3х=9
х=9:3
х=3
7(3+k)=33+5k
21+7k=33+5k
7k-5k=33-21
2k=12
k=12:2
k=6
3b-2+6b-8b=10
9b-8b=10+2
b=12