М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
лиза2741
лиза2741
10.09.2020 04:26 •  Математика

Сравните числа 1) 354 и -358; 2) -8,6 и -8,4; 3) 0 и 5,1; 4) -3,2 и 0; 5) -0,198 и -0,2; 6)- 1 5/7 и -1 7/9 (одна целая,пять седьмых и одна целая,семь девятых)

👇
Ответ:
rita1501
rita1501
10.09.2020
1. 354 > -358.
2. -8,6 < -8,4.
3. 0 < 5,1.
4. -3,2 < 0.
5. -0,198 > -0,2.
6. -1 5/7= -1 45/63,
-1 7/9= -1 49/63.
-1 45/63 > -1 49/63,
-1 5/7 > -1 7/9
4,8(48 оценок)
Открыть все ответы
Ответ:
mugenovak
mugenovak
10.09.2020

Дано: y(x) = √(-x²+12*x-6)

Найти: Значения Х при минимальных значениях y(x).

1. Функция y(x) = √f(x) - существует при f(x) ≥ 0.

2. Находим точки  f(x)=0  - под знаком радикала.

Решение.

1)  f(x) = - x² + 12*x - 6  - функция  под знаком корня.

2) Решаем квадратное уравнение f(x) = 0, находим дискриминант и корни уравнения.

D = 12² - 4*(-1)*(-6) = 144-24 = 120 - дискриминант.

√D = √120 = √(2²*30) = 2√30.

x₁ = 6 - √30, x₂ = 6 + √30 - корни квадратного уравнения. Получили область определения функции y(x):

X∈[x₁;x₂] - ООФ y(x). Минимальные значения функция на границах отрезка.

Ymin(x)=0 при x₁ = 6 - √30, x₂ = 6 + √30 - ответ.

Дополнительно - графики функций - в приложении.

Максимальное значение функции y(x) равно:

Ymax(6) = √30 (≈ 5,48).


Найдите точку минимума функции y=корень-6+12x-x^2
4,5(28 оценок)
Ответ:
МарияLevkivska
МарияLevkivska
10.09.2020

Дано: y(x) = √(-x²+12*x-6)

Найти: Значения Х при минимальных значениях y(x).

1. Функция y(x) = √f(x) - существует при f(x) ≥ 0.

2. Находим точки  f(x)=0  - под знаком радикала.

Решение.

1)  f(x) = - x² + 12*x - 6  - функция  под знаком корня.

2) Решаем квадратное уравнение f(x) = 0, находим дискриминант и корни уравнения.

D = 12² - 4*(-1)*(-6) = 144-24 = 120 - дискриминант.

√D = √120 = √(2²*30) = 2√30.

x₁ = 6 - √30, x₂ = 6 + √30 - корни квадратного уравнения. Получили область определения функции y(x):

X∈[x₁;x₂] - ООФ y(x). Минимальные значения функция на границах отрезка.

Ymin(x)=0 при x₁ = 6 - √30, x₂ = 6 + √30 - ответ.

Дополнительно - графики функций - в приложении.

Максимальное значение функции y(x) равно:

Ymax(6) = √30 (≈ 5,48).


Найдите точку минимума функции y=корень-6+12x-x^2
4,8(62 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ