Для библиотеки купили 7 одинаковых шкафов за с р .запиши выражения , которые показывают : 1) сколько рублей надо уплатить за 9 таких шкафов ; 2) сколько таких шкафов можно купить на к р .
А) 2/5 и 5/12 = 8/60 и 25/60Б) 5/12 и 7/8 = 10/24 и 21/24В) 6/17 и 11/34 = 204/578 и 187/578Г) 5/16 и 5/12 = 15/48 и 20/48Д) 7/33 и 3/77 = 48/231 и 9/231Е) 5/22 и 2/55 = 25/110 и 4/110Ж) 4/15 и 3/20 = 16/60 и 9/60З) 5/121 и 8/99 = 40/1089 и 88/1089И) 1/72 и 1/56 = 7/504 и 9/504К) 1/48 и 1/72 = 3/144 и 2/144Л) 2/77и 3/44 = 8/308 и 21/308М) 1/51 и 1/68 = 4/204 и 3/204Н) 5/36 и 7/54 = 15/108 и 14/108О) 9/35 и 11/45 = 81/315 и 77/315П) 4/49 и 5/63 = 36/441 и 35/441Р) 15/98 и 13/72 = 540/3528 и 637/3528 вот чтото типо того)
У = 0.25х^4 - 2x² Производная у' = x³ - 4x y' = 0 x³ - 4x = 0 или x·(x - 2)(x + 2) = 0 Экстремальные точки: х =-2; х = 0: х = 1 Проверим знаки производной в интервалах х∈(-∞; -2), х∈(-2; 0), х∈(0; 2), х∈(2; +∞) При х = -3 y' = -27 + 12 = -15 < 0 функция убывает При х = -1 y' = -1 + 4 = 3 > 0 функция возрастает При х = 1 y' = 1 - 4 = -3 < 0 функция убывает При х = 3 y' = 27 - 12 = 15 > 0 функция возрастает 1. Функция убывает при х∈(-∞; -2)U(0; 2) и возрастает при х∈(-2; 0)U(2; +∞) 2. Точки экстремума точка минимума х = -2; точка максимума х = 0; точка минимума х = 2.
2)к:(7/с)
/-разделить