х принадлежит множеству (-2, 2,5-1,5*sqrt(5)]
Пошаговое объяснение:
Важно учесть ОДЗ, но мы потом проверим.
Без учета ОДЗ (принимая во внимание только монотоноое возрастание и свойства логарифма, неравенсто можно переписать так:
4-4х >=(x^2-4x+3)*(x+2)
4*(1-x)>=((x-2)^2-1))*(x+2)
4*(1-x)>=(x-1)*(x-3)*(x+2)
Теперь вспомним, что выражение имеет смысл при х<1 (ОДЗ правой части). Тогда и первый логарифм в правой части определен. Кроме того требуется х>-2.
При этих условиях делим на (1-х)
1>=(3-x)*(x+2)
0>=-x^2+5x+5
0=<x^2-5x+6,25-11,25
11,25=<(x-2,5)^2
1,5*sqrt(5)=<x-0,5 или x-2,5=<-1,5*sqrt(5)
1,5*sqrt(5)+0,5=<x или x=<2,5-1,5*sqrt(5)
С учетом ОДЗ -2<x=<2,5-1,5*sqrt(5)
х принадлежит множеству (-2, 2,5-1,5*sqrt(5)]
Пошаговое объяснение:
Важно учесть ОДЗ, но мы потом проверим.
Без учета ОДЗ (принимая во внимание только монотоноое возрастание и свойства логарифма, неравенсто можно переписать так:
4-4х >=(x^2-4x+3)*(x+2)
4*(1-x)>=((x-2)^2-1))*(x+2)
4*(1-x)>=(x-1)*(x-3)*(x+2)
Теперь вспомним, что выражение имеет смысл при х<1 (ОДЗ правой части). Тогда и первый логарифм в правой части определен. Кроме того требуется х>-2.
При этих условиях делим на (1-х)
1>=(3-x)*(x+2)
0>=-x^2+5x+5
0=<x^2-5x+6,25-11,25
11,25=<(x-2,5)^2
1,5*sqrt(5)=<x-0,5 или x-2,5=<-1,5*sqrt(5)
1,5*sqrt(5)+0,5=<x или x=<2,5-1,5*sqrt(5)
С учетом ОДЗ -2<x=<2,5-1,5*sqrt(5)
а вообще суть в чем:
1) берем а = 1, подставляем 1³-1 = 0; 0/3 = 0, верно
2) берем а = n; подставляем n³-n = n(n²-1) - предполагаем, что это верно
3) берем a = n+1; опять подставляем: (n+1)³ - n-1 = n³ + 3n + 3n² +1 - n - 1 =
n³+2n+3n² = n³-n+3n+3n²
это все делится на три, когда каждое слагаемое делится на три
слагаемое 3n² делится на 3 всегда
слагаемое 3n аналогично
слагаемое n³-n делится на три, тк мы это приняли за данность в пункте 2
значит при любых целых n это выражение делится на три, а значит и при любых а
следующее аналогично