Пошаговое объяснение:
1) ∠DME и ∠DMB - смежные углы, их сумма =180°
∠DMB=180-∠DME=180°-70°=110°
∠ADM - внешний угол треугольника DMB, внешний угол треугольника = сумме двух внутренних, несмежных с ним ∠ADM=∠DMB+∠B=
=110°+30°=140°
2) ∠EMC и ∠DMB - вертикальные углы, они равны
∠EMC=∠DMB=110°
∠AEM - внешний угол треугольника ЕMC, внешний угол треугольника = сумме двух внутренних, несмежных с ним ∠AEM=∠EMC+∠C=110°+20°=130°
3) рассмотрим четырехугольник AEMD
сумма углов выпуклого четырехугольника равна 360°
∠A+∠ADM+∠AEM+∠DME=360°
∠A=360°-(∠ADM+∠AEM+∠DME)=360°-(140°+130°+70°)=20°
ответ:x=16
Пошаговое объяснение:
Решим логарифмическое уравнение Log3 (х + 4) = log 3 (2 * x - 12).
Приведем уравнение к линейному уравнению и получим:
(x + 4) = 2 * x - 12;
x + 4 = 2 * x - 12;
Перенесем все неизвестные значения на одну сторону, а известные значения на противоположную сторону. При переносе значений, их знаки меняются на противоположный знак. То есть получаем:
x - 2 * x = -12 - 4;
x - 2 * x = -16;
Вынесем за скобки общий множитель и тогда получим:
x * (1 - 2) = -16;
-x = -16;
При делении отрицательного числа на отрицательное число, получим положительное число. Получаем:
x = -16/(-1);