1)60, 120, 60, 120 Чертим эту высоту, проводим диагональ между тупыми углами. Сравниваем 2 треугольника. Получается что они равны по двум катетам. Значит половина тупого угла равна острому углу. Острый угол -х Тупой - 2х х+2х+х+2х=360 6х=360 х=60 2х=120
2)Не могу, 3)2+3+4=9 ччастей следовательно 1 часть =3 получается стороны треугольника = 9 6 12 .. ср. лин в 2 раза меньше основания .. тогда пекриметр маленького треугольника =9/2+6/2+12/2=4.5+3+6=13.5см а его стороны 4.5 3 . и 6
4)Пусть меньшее основание равна х, тогда большее 2х, следовательно боковые стороны равны по х . Тогда выразим диагонали по теореме косинусов d^2=2x^2-2x^2cosa\\ d^2=x^2+4x^2-2x*2xcos(180-a) 2x^2-2x^2cosa=5x^2+4x^2cosa\\ -6x^2cosa=3x^2\\ cosa=-\frac{1}{2}\\ a=120 другой угол равен 60 гр ответ 60 и 120 гр
1)60, 120, 60, 120 Чертим эту высоту, проводим диагональ между тупыми углами. Сравниваем 2 треугольника. Получается что они равны по двум катетам. Значит половина тупого угла равна острому углу. Острый угол -х Тупой - 2х х+2х+х+2х=360 6х=360 х=60 2х=120
2)Не могу, 3)2+3+4=9 ччастей следовательно 1 часть =3 получается стороны треугольника = 9 6 12 .. ср. лин в 2 раза меньше основания .. тогда пекриметр маленького треугольника =9/2+6/2+12/2=4.5+3+6=13.5см а его стороны 4.5 3 . и 6
4)Пусть меньшее основание равна х, тогда большее 2х, следовательно боковые стороны равны по х . Тогда выразим диагонали по теореме косинусов d^2=2x^2-2x^2cosa\\ d^2=x^2+4x^2-2x*2xcos(180-a) 2x^2-2x^2cosa=5x^2+4x^2cosa\\ -6x^2cosa=3x^2\\ cosa=-\frac{1}{2}\\ a=120 другой угол равен 60 гр ответ 60 и 120 гр
x > -18 : 3
x > -6
ОТВЕТ: (-6; +∞)
2) -8х < 32
x > 32 : (-8)
x > -4
ОТВЕТ: (-4; +∞)
3) 5у > 16
y > 16 : 5
y > 3,2
ОТВЕТ: (3,2; +∞)
4) 6,5у > 13
y > 13 : 6,5
y > 2
ОТВЕТ: (2; +∞)
5) -8х > 24
x < 24 : (-8)
x < -3
ОТВЕТ: (-∞; -3)
6) 7,5х < 30
x < 30 : 7,5
x < 4
ОТВЕТ: (-∞; 4)