у=(х-5)²·(х-3)+ 10
y' = 2·(х-5)·(х-3) + (х-5)²
ищем минимум
2·(х-5)·(х-3) + (х-5)² = 0
(х-5)·(2х - 6 + х - 5) = 0
(х-5)·(3х - 11) = 0
х₁ = 5, х₂ = 11/3 = 3 2/3
Исследуем знак производной в интервалах
+ - +
11/3 5
У'(3) = -2·(-2) = 4 > 0 y возрастает
У'(4) = -1·1 = -1 < 0 y убывает
У'(6) = 1·7 = 7 > 0 y возрастает
Точка минимума х₁ = 5
У min = у(5) = (5-5)²·(5-3)+ 10 = 0·2 + 10 = 10
На промежутке от 4 до 8 функция ведёт себя так:убывает при х∈[4 ; 5] и возрастает при ∈[5 ; 8].
Следовательно, наименьшее значение функции совпадает с её минимальным значением
ответ: у наим = 10
х кг купили вторых
х*16 р потратили на вторые
(52+16*х)/(4+х) средняя цена
составим уравнение
(52+16х)/(4+х)=14
(52+16х)=14(4+х)
16х=56+14х-52
16х-14х=4
2х=4
х=4/2=2 кг вторых
проверка
(52+16*2)/(2+4)=84/6=14