Решение пусть в основании равнобедренная трапеция авсд, где основания ад и вс, причём ав=вс=сд=4 и угол вад =углу адс =60. найдём площадь этой трапеции из точек в и с проведём высоты в трапеции вк и см. из тр-ка авк находим вк = 4*sin60 =2√3 это высота трапеции ак = 4*cos60 = 2 тогда и мк=2 и ад =4+2+2 =8 площадь трапеции равнв = (8+4)*2√3 /2 =12√3 из тр-ка вкд по теореме пифагора найдём диагональ трапеции вд² =вк² +кд² = (2√3)² +6² =48 тогда вд = √48 = 4√3 из тр-ка вдд1 где вд =4√3 и угол двд1 =30 находим дд1= вд*tg30 =4√3* 1/√3 =4 тогда объём равен = 12√3*4 =48√3
Известно, что велосипедисты встретились через час и продолжили движение. Можно написать через формулу: Пусть х-скорость первого велосипедиста, а у- скорость второго велосипедиста, тогда час
Поскольку каждый велосипедист проехал расстояние от А до B, тогда каждый из них проехал S, а значит на все расстояние от A до В было затрачено часа.
После этого у них была стоянка 2 часа, и они выехали обратно, время до встречи нам уже известно 1 час, значит
2+2+1=5 часов времени они потратили до второй встречи