М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Alla11111111111
Alla11111111111
14.04.2021 19:21 •  Математика

Площадь квадрата 49 дм². узнайте периметр! !

👇
Ответ:
pjs
pjs
14.04.2021
Если площадь 49 дм2 то длина одной стороны = 7, так как у квадрата 4 стороны то периметр умножаем так.
Решение:
P = (7+7)×2=28 дм
S = 7×7=49 дм2
ответ: периметр квадрата 28 дм.
4,6(19 оценок)
Ответ:
dashullya2001
dashullya2001
14.04.2021
Площадь узнается длину умножить на ширину так как у квадрата все стороны равны то одна сторона равна 7 дм. Периметр узнается длину + ширину умноженное на 2             (7+7)*2=28(см)-периметр
ответ: 28 см периметр
4,4(88 оценок)
Открыть все ответы
Ответ:
Phgfg
Phgfg
14.04.2021

Первое уравнение системы задает окружность радиуса 3 с центром в точке (3,4)

Второе уравнение - смещенный на единицу вверх график модуля x, который можно двигать влево или вправо меняя значения параметра (смотрите чертеж в прикр. файлах)

Становится понятно, что при смещении вправо графика модуля наступит такой момент, при котором левая его ветвь будет касаться окружности... После этого момента, графики модуля и окружности будут иметь 4 точки пересечения. Продолжая двигаться вправо, придем к значению a=3, которое, как несложно сообразить, соответствует трем точкам пересечения. Наконец, дойдем до такого значения параметра, при котором правая ветвь станет касательной к окружности, снова будет 3 общие точки. Таким образом надо найти при каких значениях параметра наши прямые/ветви являются касательными к окружности.

Из уравнения окружности выделим нижнюю часть, нам интересна только она, ибо только ее касаются прямые:

y=4-\sqrt{6 x-x^2}

Затем найдем такой параметр, при котором уравнения:

4-\sqrt{6 x-x^2}=-(x-a)+1

и

4-\sqrt{6 x-x^2}=+(x-a)+1

имеют единственные решения. Они сводятся к квадратным:

-a^2+2 a x+6 a-2 x^2-9=0

и

-9 - 6 a - a^2 + 12 x + 2 a x - 2 x^2=0

Квадратные уравнения имеют единственное решение при нулевом дискриминанте (соответствует случаю касания графиков). Рассмотрим подробно второе выражение, первое делается аналогично. Его дискриминант:

D=18-a^2=0, a=\pm3\sqrt{2}

Получили два значения параметра, лишь одно из них верное. Как выбрать? Т.к. параметр отвечает за смещение влево/вправо графика модуля относительно точки (0,1), то отрицательное значение сместит наш график (вершину угла образованного оранжевой ломаной на чертеже, если дословно) на отрицательную часть оси x, что, очевидно, совершенно неправильный случай.

Таким же образом находим из первого выражения a=3 (2 - \sqrt{2})

Итого получили всего 3 значения параметра при которых система имеет ровно три решения.



Найдите значения а, при каждом из которых система имеет ровно три решения
4,7(89 оценок)
Ответ:

Первое уравнение системы задает окружность радиуса 3 с центром в точке (3,4)

Второе уравнение - смещенный на единицу вверх график модуля x, который можно двигать влево или вправо меняя значения параметра (смотрите чертеж в прикр. файлах)

Становится понятно, что при смещении вправо графика модуля наступит такой момент, при котором левая его ветвь будет касаться окружности... После этого момента, графики модуля и окружности будут иметь 4 точки пересечения. Продолжая двигаться вправо, придем к значению a=3, которое, как несложно сообразить, соответствует трем точкам пересечения. Наконец, дойдем до такого значения параметра, при котором правая ветвь станет касательной к окружности, снова будет 3 общие точки. Таким образом надо найти при каких значениях параметра наши прямые/ветви являются касательными к окружности.

Из уравнения окружности выделим нижнюю часть, нам интересна только она, ибо только ее касаются прямые:

y=4-\sqrt{6 x-x^2}

Затем найдем такой параметр, при котором уравнения:

4-\sqrt{6 x-x^2}=-(x-a)+1

и

4-\sqrt{6 x-x^2}=+(x-a)+1

имеют единственные решения. Они сводятся к квадратным:

-a^2+2 a x+6 a-2 x^2-9=0

и

-9 - 6 a - a^2 + 12 x + 2 a x - 2 x^2=0

Квадратные уравнения имеют единственное решение при нулевом дискриминанте (соответствует случаю касания графиков). Рассмотрим подробно второе выражение, первое делается аналогично. Его дискриминант:

D=18-a^2=0, a=\pm3\sqrt{2}

Получили два значения параметра, лишь одно из них верное. Как выбрать? Т.к. параметр отвечает за смещение влево/вправо графика модуля относительно точки (0,1), то отрицательное значение сместит наш график (вершину угла образованного оранжевой ломаной на чертеже, если дословно) на отрицательную часть оси x, что, очевидно, совершенно неправильный случай.

Таким же образом находим из первого выражения a=3 (2 - \sqrt{2})

Итого получили всего 3 значения параметра при которых система имеет ровно три решения.



Найдите значения а, при каждом из которых система имеет ровно три решения
4,7(5 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ