Доказательства: если всего 14 учеников решило 58 задач,то при этом каждый ученик в среднем решит 4,1 задачи,но при этом есть ученики,которые решили по 1,2,3 задачи.Если мы берем как обязательное,что хотя бы 1 ученик решил 5 задач,мы получаем-1 по 5 задачи на остальных 13 учеников по 53 задач.при этом условии на оставшихся 13 учеников в среднем 4,1 задачи,а это значит,что у нас уже есть как минимум 3 ученика, решившие по 5 задач. А именно если 3 учеников решили по 5 задач, то на остальных 11 приходится в среднем по 3,9 задач
Примеры прерывных случайных величин:1) число появлений герба при трех бросаниях монеты (возможные значения 0, 1, 2, 3);2) частота появления герба в том же опыте (возможные значения );3) число отказавших элементов в приборе, состоящем из пяти элементов (возможнее значения 0, 1, 2, 3, 4, 5);4) число попаданий в самолет, достаточное для вывода его из строя (возможные значения 1, 2, 3, …, n, …);5) число самолетов, сбитых в воздушном бою (возможные значения 0, 1, 2, …, N, где – общее число самолетов, участвующих в бою).Примеры непрерывных случайных величин:1) абсцисса (ордината) точки попадания при выстреле;2) расстояние от точки попадания до центра мишени;3) ошибка измерителя высоты;4) время безотказной работы радиолампы.Условимся в дальнейшем случайные величины обозначать большими буквами, а их возможные значения – соответствующими малыми буквами. Например, – число попаданий при трех выстрелах; возможные значения: .Рассмотрим прерывную случайную величину с возможными значениями . Каждое из этих значений возможно, но не достоверно, и величина Х может принять каждое из них с некоторой вероятностью. В результате опыта величина Х примет одно из этих значений, т.е. произойдет одно из полной группы несовместных событий: