Двугранный угол при боковом ребре SD равен линейному углу между перпендикулярами из вершин А и С на ребро SD.
Находим длину рёбер AS = CS = √(3² + 1²) = √10.
Ребро SD = √(3² + (√2)²) = √11.
Боковые грани ASD и CSD - прямоугольные треугольники.
Перпендикуляры h к ребру SD равны h = 1*√10/√11 = √(10/11).
Угол α между перпендикулярами находим по теореме косинусов.
cos α = ((√(10/11))² + (√(10/11))² - (√2)²)/(2*(√(10/11))*(√(10/11))) = -0,1.
Угол α = arccos(-0,1) = 95,73917 градуса.
ответ: 13/cos α = 13/(-0,1) = -130.
Число делится на 5, если его последняя цифра 5 или 0
1245 : 5 = 249
411 040 : 5 = 82 208
- - - - - - - - - - - - - - - -
Число делится на 4, если число, составленное из последних двух цифр делится на 4
24 548 : 4 = 6 137
411 040 : 4 = 102 760
- - - - - - - - - - - - - - - - -
Число делится на 10, если его последняя цифра 0
411 040 : 10 = 41 104
- - - - - - - - - - - - - - - -
Остаток всегда меньше делителя (если равен делителю, то число делится без остатка или остаток 0).
24 548 : 4 345 = 5 (ост. 2 823)
222 : 4 = 55 (ост. 2)
2.∫cos4xdx=1/4∫cosudu=sinu/4+C=1/4*sin(4x)+C
u=4x
du=4dx
3.∫cos(x/6)dx=6∫cosudu=6sinu+C=6sin(x/6)+C
u=x/6
du=1/6*dx
4.∫cos(2-3x)dx=-1/3∫cosudu=-sinu/3+C=-1/3*sin(2-3x)+C
u=2-3x
du=-3dx
5.∫x²cosx³dx=1/2∫x²cosx(cos2x+1)dx=1/2∫(x²cosx+x²cosxcos2x)dx=1/2∫x²cosxcos2xdx+1/2∫x²cosxdx=1/4∫x²(cosx+cos3x)dx+1/2∫x²cosxdx=1/4∫(x²cosx+x²cos3x)dx+1/2∫x²cosxdx=1/4∫x²cos3xdx+3/4∫x²cosxdx=1/12*x²*sin3x-1/6∫xsin3xdx+3/4∫x²cosxdx=1/18*x*cos3x+1/12*x²*sin3x-1/18∫cos3xdx+3/4∫x²cosxdx=1/18*x*cos3x+1/12*x²*sin3x-1/54∫cosudu+3/4∫x²cosxdx=1/18*x*cos3x+1/12*x²*sin3x-sinu/54+3/4∫x²cosxdx=1/18*x*cos3x+1/12*x²*sin3x-sinu/54+3/4*x²sinx-3/2∫xsinxdx=1/18*x*cos3x+1/12*x²*sin3x-sinu/54+3/4*x²sinx+3/2xcosx-3/2∫cosxdx=1/18*x*cos3x+1/12*x²*sin3x-sinu/54+3/4*x²sinx+3/2*xcosx-3sinx/2+C=3/4*x²sinx+1/12*x²*sin3x-3sinx/2-1/54*sin3x+3/2*x*cosx+1/18*x*cos3x+C
u=3x
du=3dx