Как решить на скорость почтальен печкин проехал на вилосепеди 36 км за 2 ч. затем он уменьшил скорлсть на 2 км/ч и ехал ещё 3 ч.сколько всего км проехад на велосипеде печкин? как заптсать?
Сначала скорость была 18 км/ч=36/2, потом скорость стала на 2 меньше, т.е 16 км/ч. и он проехал с это скоростью 3 часа, т.е. 3*16=48 км, значит, всего он проехал 36+48=84 км
Краткую запись делаешь в таблицу. 36:2= 18 (км/ч)- начальная скорость. 18-2=16(км/ч)- скорость после уменьшения. 16*3=48 (км)- расстояние после уменьшения скорости 48+36=84- всего. ответ: Всего проехал 84 километров.
По условию, среди чисел от 1 до N ровно 3/10 делятся на 3 и ровно 7/10 не делятся на 3. Отсюда следует, что N делится на 10. Заметим, что числа N=10 и N=20 подходят, в первом случае на 3 делится 3 числа, во втором 6 чисел, 3/10=6/20=30%. Число 30 уже не подходит, так как 10/30=1/3>30%. Покажем, что любое N>30 также не подойдет. Поскольку N делится на 10, это число можно представить в виде 10k, где k>3 – натуральное число. Ясно, что чисел, меньших N и кратных 3, заведомо не меньше 3k, поскольку в любом десятке (от 1 до 10, от 11 до 20, и так далее, от N-9 до N) есть минимум три числа, делящихся на 3. С другой стороны, в десятке от 20 до 30 таких чисел уже 4 (21, 24, 27, 30), поэтому всего чисел от 1 до N, кратных 3, не меньше 3k+1. Поскольку (3k+1)/10k=3k/10k+1/10k=3/10+1/10k>30%, любое число N>30 нам не подойдет. Следовательно, существует всего 2 подходящих числа – 10 и 20.
Итак, n = 1 или 2. На всякий случай проверяем: N = 10*1 = 10: на 3 делятся 3 числа (3, 6, 9), их 30% от 10. N = 10*2 = 20: на 3 делится 6 чисел (3, 6, 9, 12, 15, 18), их 30% от 20.