a) наибольшее 36 и наименьшее 9
б) наибольшее 49 и наименьшее 1
в) наибольшее 81 и наименьшее 0
г) наибольшее 100 и наименьшее 0
Пошаговое объяснение:
Парабола y=x² на интервале (-∞;0) строго убывает, а на интервале (0;+∞) строго возрастает. Поэтому на промежутках содержащих значение х=0 наименьшее значение функции всегда 0, а наибольшее значение функции определяется в граничных точках.
В промежутках не содержащих значение х=0 наибольшее и наименьшее значения функции определяется в граничных точках.
а) [3; 6] не содержит х=0, поэтому наибольшее и наименьшее значения функции определяется среди y(3)=3²=9 и y(6)=6²=36
б) [-7; -1] не содержит х=0, поэтому наибольшее и наименьшее значения функции определяется среди y(-7)=(-7)²=49 и y(-1)=(-1)²=1
в) [-2; 9] содержит х=0, поэтому наибольшее значение функции определяется среди y(-2)=(-2)²=4 и y(9)=9²=81, а и наименьшее значение функции равно 0
г) [-10; 4] содержит х=0, поэтому наибольшее значение функции определяется среди y(-10)=(-10)²=100 и y(4)=4²=16, а и наименьшее значение функции равно 0
х+у=570
у=570-х
(х-1/4х)=(у-1/6у)
3/4х-5/6у=0
3/4х-5/6(570-х)=0
3/4х-5/6*570+5/6х=0
(3*6+5*4)х/24=1425/3
38/24х=1425/3
х=1425/3*24/38=34200/114=300 тг у димы
570-300=270 тг у саши
проверка
300-300*1/4=300-75=225 тг
270-270*1/6=270-45=225 тг
225=225