Парусная регата, в которой участвовал капитан врунгель длилась три дня.в первый день "беда" преодолела 95 км., что составило 5/11 длины всего пути, а во второй день-расстояние в 1,5 раза меньшее, чем в первый.сколько км."беда в третий день?
ПОТОМУ ЧТО В ПОСЛЕДНИЕ ГОДЫ БЫЛИ ОТРЕМОНТИРОВАНЫ МНОГИЕ ФАСАДЫ И НОВЫЕ ДОМА ИМЕЮТ ВАКАНТНЫХ CITYSCAPE ЗНАЧИТЕЛЬНО ИЗМЕНИЛАСЬ. В ЧАСТНОСТИ ЭТО НЕ БОЛЬШЕ, ТАК ЧТО СЕРЫЙ И POKROWSSKAJA ЦЕРКОВЬ XVIII ВЕКА ИЛИ СОБОР VERKLAURUNGS БЛЕСК В НОВЫХ БЛЕСК. ТАМБОВ ЯВЛЯЕТСЯ КУЛЬТУРНЫМ ЦЕНТРОМ ОБЛАСТИ И ИМЕЕТ НЕСКОЛЬКО КИНОТЕАТРОВ И ТЕАТРОВ, НАДРЕГИОНАЛЬНОГО ВАЖНЫХ КАРТИН И ОПЕРНОГО ТЕАТРА. ЛЕДОВЫЙ СТАДИОН, ФУТУРИСТИЧЕСКИЙ ЭЛЕГАНТНО, КАК «БЕРЕМЕННАЯ УСТРИЦА», БЕРЛИН ТОЛПА СЪЕМНИК. НЕСКОЛЬКО РАЗ В ГОДУ КРОМЕ ТОГО ВЫПОЛНЯЕТ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ЦИРК. ОДИН ИЗ САМЫХ ВАЖНЫХ МЕСТ В ГОРОДЕ – ПАМЯТНИК ДЛЯ СОИ КОСМОДЕМЬЯНСКОЙ: МОЛОДОЙ ПАРТИЗАН БЫЛ УБИТ НЕМЦАМИ В 1941 ГОДУ И В СОВЕТСКОЕ ВРЕМЯ КАК ГЕРОИНЯ ПОЧИТАЕМЫХ. НА ВСТРЕЧИ, ОН ГОВОРИТ ПРОСТО: «МЫ ВСТРЕТЯТСЯ НА СОИ».
Показательными называются неравенства, в которых неизвестное содержится в показателе степени.
Рекомендации к теме При решении систем показательных уравнений и неравенств, применяются те же приемы, что при решении систем алгебраических уравнений и неравенств (метод подстановки, метод сложения, метод введения новых переменных). Во многих случаях, прежде чем применить тот или иной метод решения, следует преобразовать каждое уравнение (неравенство) системы к возможно более простому виду.
Примеры.
1.
Решение:
Решим эту систему подстановки:
ответ: (-7; 3); (1; -1).
2.
Решение:
Обозначим 2х= u, 3y = v. Тогда система запишется так:
Решим эту систему подстановки:
a)
Уравнение 2х = -2 решений не имеет, т.к. –2 <0, а 2х > 0.
b)
ответ: (2;1).
3.
Решение:
Перемножим уравнения данной системы. Получим
ответ: (1;2).
4.
Решение:
1) Решим неравенство
т.к. функция у=3t возрастает,
2) Решим уравнение
(0,2)3x2 -2=(0,2)2х2+х+4,
3х2– 2 = 2х2 +х + 4,
х2– х – 6 = 0,
х1 = 2> 1,5;
х2= -3 < 1,5; следовательно х = -3.
ответ:-3. свойства степеней, при которых преобразуются показательные неравенства, перечислены в теоретических материалах по теме 7 «Показательные уравнения».Кроме того, пользуются также следующими свойствами показательной функции у = ах,
a > 0 ; а 1
1) аx > 0 при всех а > 0 и x R;
2) при а > 1 функция у= ах возрастает, т.е. если a>1 и <=> x1 > x2;
3) при 0< a < 1 функция у = ах убывает, т.е. если 0 < a < 1 и <=> x1 < x2.
95:5*11=209 км
95:2,5=38 км
209-95-38=76 км