где D - это греческая буква "Дельта"
Пошаговое объяснение:
Вычисляете определитель системы D состоящий из коэффициентов при неизвестных:
3 -2 -5
5 -2 -3= (3*(-2)*1+5*(-5)*1+(-2)*(-3)*1)-((-5)*(-2)*1+3*(-3)*1+5*(-2)*1)=(-25)-(-9)=-16
1 1 1
D = -16
Затем вычисляете определитель D1, который отличается от D тем, что первый столбец заменен на столбец из свободных элементов:
0 -2 -5
0 -2 -3 = (0*(-2)*1+0*(-5)*1+(-2)*(-3)*1)-((-5)*(-2)*1+0*(-3)*1+0*(-2)*1)=(6)-(10)=-4
1 1 1
D1 = -4
Далее вычисляете определитель D2, отличающийся от D тем, что второй столбец заменен на столбец свободных элементов.
3 0 -5
5 0 -3 = (3*0*1+5*(-5)*1+0*(-3)*1)-((-5)*0*1+3*(-3)*1+0*5*1)=(-25)-(-9)=-16
1 1 1
D2 = -16
Далее вычисляете определитель D3, отличающийся от D тем, что третий столбец заменен на столбец свободных элементов.
3 -2 0
5 -2 0 = (3*(-2)*1+5*0*1+(-2)*0*1)-(0*(-2)*1+3*0*1+5*(-2)*1)=(-6)-(-10)=4
1 1 1
D3 = 4
Окончательно:
x = D1/D; y = D2/D; z = D3/D.
x = -4 / -16 = ¼
y = -16 / -16 = 1
z = 4 / -16 = -¼
где D - это греческая буква "Дельта"
Если скорость течения реки составляет 1/7 часть от собственной скорости катера, значит, собственная скорость катера в 7 раз больше скорости течения реки. То есть,
Vс = Vт*7 = 1,5*7 = 10,5 км/ч,
где Vс – собственная скорость катера;
Vт – скорость течения реки.
Если катер движется против течения реки, из его собственной скорости следует вычесть скорость течения реки. Тогда, с учетом времени (2 ч 15 мин = 2+15/60 ч), проведенным катером в пути:
S = V*t = (Vc-Vт)*t1 = (10,5-1,5)*2,25 = 20,25 км,
где S – расстояние, которое пройдет катер, двигаясь против течения;
t1 – время, затраченное на движение катера против течения.
Если катер движется по течению реки, к его собственной скорости следует прибавить скорость течения реки. Тогда, с учетом времени (3 ч 25 мин = 3+25/60 ч), проведенным катером в пути:
S = V*t = (Vc+Vт)*t1 = (10,5+1,5)*(205/60) = 41 км.
ответ. 20,25 км против течения; 41 км по течению.