1,2 м/с:1000*3600=4,32 км/ч 0,9 м/с:1000*3600=3,24 км/ч Vср=Sобщ:tобщ 4,32*3,8=16,416 (км за 3,8 часа 3,24*2=6,48 (км за 2 ч Sобщ=16,416+6,48=22,896 (км) tобщ=3,8+2=5,8 (ч) Vср=22,896:5,8=3,95 (км/ч) (приблизительно) ответ: средняя скорость равна 3,95 км/ч (или 3,(947586206) км/ч)) (или 1,1 м/с (приблизительно))
A) (x-2)/6 = (2x+3)/8, общий знамен. 24, получаем уравнение 4*(x-2)=3*(2x+3), 4 и 3 дополнительные множители раскрываем скобки: 4x-8=6x+9, 4x-6x=9+8, -2x=17, x=-8,5 в)Исходя из условия получаем, что 2-е выражение больше 1-го на 2, следовательно получается уравнение 3/4-5/6*z-(1/2*z-2/3)=2. Раскрывая скобки получаем : 3/4-5/6*z-1/2*z+2/3=2, приводим к общему знаменателю: 12. Умножаем каждый член уравнения на 12: 3/4*12-5/6*12*z-1/2*z*12+2/3*12=24 9--10z-6z+8=24 -16z+17=24 -16z=24-17 -16z=7 z=-7/16 б) 17-5у=-(17у+19) Раскрываем скобки: 17-5у=-17у-19, -5у+17у=-19-17, 12у=-36, у= -36/12=-3 г) (2,6р-9,8)/р=4, умножаем обе части выражения на р≠0 2,6р-9,8=4р 2,6р-4р=9,8 -1,4р= 9,8 р=9,8/(-1,4) р=-7
Задача на применение формулы: путь, скорость, время S - путь V - скорость t - время S = V·t, откуда t = S/V S = 15км V пеш = 6км/ч t пеш = 15/6 = 2,5(ч) S = 15км V вел = 10км/ч t вел = 15/10 = 1,5(ч) Если бы велосипедист и пешеход отправились из посёлка одновременно, то, ясное дело, что велосипедист добрался бы до озера быстрее на 1час. Но ведь он задержался с отъездом из посёлка на 1.5 часа. Поэтому добавим ему эти 1,5 часа и получим 1,5 + 1,5 = 3 часа. Т.е. от момента выхода пешехода до момента прибытия велосипедиста к озеру часа. Это на 3 - 2,5 = 0,5(ч) больше. За эти полчаса пешеход уже успел искупаться и половить рыбки. Вот так! Не надо по воскресеньям спать долго! :)) ответ: пешеход доберётся быстрее на 0,5часа.
0,9 м/с:1000*3600=3,24 км/ч
Vср=Sобщ:tобщ
4,32*3,8=16,416 (км за 3,8 часа
3,24*2=6,48 (км за 2 ч
Sобщ=16,416+6,48=22,896 (км)
tобщ=3,8+2=5,8 (ч)
Vср=22,896:5,8=3,95 (км/ч) (приблизительно)
ответ: средняя скорость равна 3,95 км/ч (или 3,(947586206) км/ч)) (или 1,1 м/с (приблизительно))