28 голов
Пошаговое объяснение:
Обозначим общее количество голов дракона х
Тогда количество голов после удара первого богатыря будет - a,
после второго богатыря - b.
Вот так:
(х : 2) - 2 = а - остаток голов после первого богатыря
(а : 2) - 2 = b - остаток голов после второго богатыря
(b : 2) - 2 = 0 - остаток голов после третьего богатыря, то есть ни одной.
Решение начинать будем с конца.
(b : 2) - 2 = 0
b/2 - 2 = 0
Прибавим 2 к обеим частям уравнения:
b/2 - 2 + 2 = 0 + 2
b/2 = 2
b = 2 • 2
b = 4
Мы нашли количество голов, которые остались у дракона после второго богатыря. И которые рубил третий богатырь.
Теперь подставляем b в наше уравнение:
(а : 2) - 2 = b
a/2 - 2 = 4
a/2 = 4 + 2
a/2 = 6
a = 6 • 2
a = 12
Тут мы нашли количество голов, которые остались у дракона после первого богатыря. И которые рубил второй богатырь
Теперь вычислим сколько голов было с самого начала
(х : 2) - 2 = а
(х : 2) - 2 = 12
х/2 - 2 = 12
х/2 = 12 + 2
х/2 = 14
х = 14 • 2 = 28
Столько голов было у дракона с самого начала.
Пока богатыри его не убили, несчастного.
ответ: 28 голов
А, ну и проверочка, конечно
(28 : 2) + 2 = 16 голов срубил первый богатырь, видимо Илья Муромец
28 - 16 = 12 - столько голов он оставил двум другим богатырям
(12 : 2) + 2 = 8 - столько голов срубил второй богатырь. Скорее всего Добрыня Никитич.
12 - 8 = 4 - осталось после него драконьих голов
(4 : 2) + 2 = 4 - вот 4 последние головы срубил последний богатырь. Алёша Попович скорее всего)
4 - 4 = 0 вот и закончились даконьи головы)
Пусть коэффициент отношения будет х
S (ABK)+S (BKC)= 5х+15х=20х
20х=96 см²
х=4,8 см²
S (ABK)=4,8*5=24 см²
S (BKC)=4,8*15=72 см²
Пошаговое объяснение:
Если обратить внимание на отношение сторон треугольника АВС, можно увидеть, что это - египетский треугольник.
Действительно, АС=5+15=20
АВ:ВС:АС=3:4:5
Треугольник АВС - прямоугольный, его площадь найдем половиной произведения катетов:S (ABC)=AB*BC:2
S (ABC)=12*16:2=96 см² ( Можно площадь найти и по формуле Герона с тем же результатом)
Отрезком ВК треугольник АВС делится на два, у которых равные высоты, опущенные на прямую АС из вершины В.
Отношение площадей треугольников с равными высотами равно отношению сторон, к которым эти высоты проведены.
Сумма площадей треугольника АВК и ВКС равна 96см², и эти площади относятся как 5:15
S (ABK):S (BKC)= 5:15