Задачи из теории чисел, раздел отношение делимости.
Число А делится на 8 с остатком 6. Запишем это выражение
а=8*к+6. где к - коэффициент, целое число.
Нам надо найти такое число в, чтобы сумма а+в делилась на 8 без остатка.
Запишем сумму: а+в=8*к+6+в. Видно, что в правой части равенства 8*к делится на 8 без остатка. Значит, чтобы вся сумма делилась на 8, надо чтобы и сумма 6+в делилась на 8 без остатка.
То есть 6+в должно быть равно 8 16 24 Возьмем для начала 8. 6+в=8 отсюда в=2. Остальные варианты получаются путем прибавления или вычитания числа кратного 8. Все числа кратные 8 получаются путем умножения произвольного ЦЕЛОГО коэффициента N на 8.
Итак, общий вид числа в будет: в=2+n*8 где n-целое число.
Задачи из теории чисел, раздел отношение делимости.
Число А делится на 8 с остатком 6. Запишем это выражение
а=8*к+6. где к - коэффициент, целое число.
Нам надо найти такое число в, чтобы сумма а+в делилась на 8 без остатка.
Запишем сумму: а+в=8*к+6+в. Видно, что в правой части равенства 8*к делится на 8 без остатка. Значит, чтобы вся сумма делилась на 8, надо чтобы и сумма 6+в делилась на 8 без остатка.
То есть 6+в должно быть равно 8 16 24 Возьмем для начала 8. 6+в=8 отсюда в=2. Остальные варианты получаются путем прибавления или вычитания числа кратного 8. Все числа кратные 8 получаются путем умножения произвольного ЦЕЛОГО коэффициента N на 8.
Итак, общий вид числа в будет: в=2+n*8 где n-целое число.
= ==
9 45/100:5 1/4+0,2 945/100*4/21+0,2 1,8+0,2
(63/10-19/4):31/2 31/20*2/31 1/10
=== 1/20
2 2 2