М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Beknazarova02
Beknazarova02
31.08.2022 22:46 •  Математика

Впервом биде в 2.3 раза больше молока, чем во втором. если из первого бидона перелить 8.8 литра молока, то в нём станет на 2 литра меньше молока, чем во втором. сколько литров молока во втором бидоне?

👇
Ответ:
doblezor
doblezor
31.08.2022
(х + 8,8) - (2,3 - 8,8) = 2
х + 8,8 - 2,3х + 8,8 = 2
- 1,3х = - 8,8 - 8,8 + 2
-1,3х = - 15,6
х = (- 15,6) : (- 1,3)
х = 12 литров во втором бидоне
4,5(49 оценок)
Открыть все ответы
Ответ:
SaharKchayu
SaharKchayu
31.08.2022
Добрый день! Давайте разберем по очереди каждое задание:

1) Для нахождения производной функции y=7x^3 - tg2x + 3^x необходимо применить правило дифференцирования для каждого слагаемого.

Первое слагаемое: 7x^3. У него есть степень, поэтому мы можем использовать правило степенной функции. Если имеем функцию вида y = ax^n, то производная будет равна y' = nax^(n-1). Применим это правило:
y' = 3 * 7x^(3-1) = 21x^2.

Второе слагаемое: -tg2x. Здесь нам понадобится правило дифференцирования тангенса функции ф(x). Если имеем функцию y = tg(f(x)), то производная будет равна y' = f'(x) * (1 + tg^2(f(x))). Правило, которое мы здесь использовали, называется производной композиции. Применим это правило:
y' = 2 * (1 + tg^2(2x)).

Третье слагаемое: 3^x. Тут мы снова применим правило степенной функции:
y' = 3^x * ln(3).

Теперь сложим результаты для каждого слагаемого, чтобы найти производную функции y:
y' = 21x^2 + 2 * (1 + tg^2(2x)) + 3^x * ln(3).

2) Имеем функцию y = (3x^2 - 5x - 8) * sqrt(4x). Для нахождения производной нужно применить правило произведения двух функций.

Первое слагаемое: 3x^2 - 5x - 8. Производная будет равна y' = 6x - 5.

Второе слагаемое: sqrt(4x). Здесь нам понадобится использовать правило производной корня функции. Если имеем функцию y = sqrt(f(x)), то производная будет равна y' = f'(x) / (2 * sqrt(f(x))). Применим это правило:
y' = (2 / (2 * sqrt(4x))) = 1 / sqrt(4x) = 1 / (2 * sqrt(x)) = 1 / (2sqrt(x)).

Теперь перемножим результаты:
y' = (6x - 5) * (1 / (2sqrt(x))) = (6x - 5) / (2 * sqrt(x)).

3) Функция f(x) = (x^2 + x - 2) / (x - 1). Для нахождения производной нужно применить правило дифференцирования частного двух функций.

Числитель: x^2 + x - 2. Производная будет равна y' = 2x + 1.

Знаменатель: x - 1. Здесь нужно применить правило дифференцирования линейной функции. Если имеем функцию y = ax + b, то производная будет равна y' = a. Применим это правило:
y' = 1.

Теперь используем формулу для нахождения производной частного двух функций:
y' = (2x + 1)(x - 1) - (x^2 + x - 2) * 1 / (x - 1)^2 = (2x + 1)(x - 1) - (x^2 + x - 2) / (x - 1)^2.

4) Функция y = sqrt(2x^3 + 7x^2 + 5) * ln(3x). Для нахождения производной нужно применить правило дифференцирования произведения двух функций.

Первое слагаемое: sqrt(2x^3 + 7x^2 + 5). Производная будет равна y' = (1 / (2sqrt(2x^3 + 7x^2 + 5))) * (6x^2 + 14x).

Второе слагаемое: ln(3x). Здесь нужно использовать правило дифференцирования натурального логарифма функции. Если имеем функцию y = ln(f(x)), то производная будет равна y' = f'(x) / f(x). Применим это правило:
y' = (1 / (3x)) * (3).

Теперь перемножим результаты:
y' = (1 / (2sqrt(2x^3 + 7x^2 + 5))) * (6x^2 + 14x) * (1 / (3x)) = (6x^2 + 14x) / (6x * 2sqrt(2x^3 + 7x^2 + 5)) = (3x + 7) / (6sqrt(2x^3 + 7x^2 + 5)).

5) Функция y = ln^4(5x^3 - 2x + 6). Для нахождения производной нужно применить правило дифференцирования композиции функций.

Функция возводит логарифм в 4-ую степень, поэтому можно представить ее как (ln(5x^3 - 2x + 6))^4. Используем правило дифференцирования степенной функции:
y' = 4(ln(5x^3 - 2x + 6))^3 * (1 / (5x^3 - 2x + 6)) * (15x^2 - 2).

6) Функция y = (ctg(2x))^ln(4x). Тут также нужно применить правило дифференцирования композиции функций.

Первое слагаемое: ctg(2x). Производная будет равна y' = -1 / (sin^2(2x)).

Второе слагаемое: ln(4x). В этом случае нужно использовать правило дифференцирования натурального логарифма функции. Если имеем функцию y = ln(f(x)), то производная будет равна y' = f'(x) / f(x). Применим это правило:
y' = (1 / (4x)) * (4).

Теперь перемножим результаты:
y' = (-1 / (sin^2(2x))) * (1 / (4x)) * (4) = -1 / (xs xin^2(2x)).

Надеюсь, что объяснение было понятным и полезным для вас. Если возникнут дополнительные вопросы, пожалуйста, обратитесь за помощью!
4,5(92 оценок)
Ответ:
nikolottorres
nikolottorres
31.08.2022
Для решения данной задачи, мы можем использовать принципы комбинаторики.

Первым шагом мы рассмотрим случай, когда мы удаляем число из последовательности 1 2 3 4 5 6 и оставшиеся числа должны быть упорядочены по возрастанию. Затем рассмотрим случай, когда оставшиеся числа должны быть упорядочены по убыванию.

1) Упорядоченные по возрастанию числа:

Для того чтобы найти количество перестановок, мы рассмотрим, сколько возможных мест может занимать удаляемое число.

Перестановку чисел 1 2 3 4 5 6 мы можем представить в виде строки: 123456.

Если мы удалим число 1, то оставшиеся числа должны быть упорядочены по возрастанию. То есть, оставшиеся числа могут занимать следующие позиции в строке:
_23456 (1 может занимать любое из 6 возможных мест).

Если мы удалим число 2, то оставшиеся числа должны быть упорядочены по возрастанию. То есть, оставшиеся числа могут занимать следующие позиции в строке:
1_3456 (2 может занимать 5 возможных мест, так как оно не может стоять перед 1).

Продолжая этот анализ, мы получим следующую таблицу:

| Место для удаления числа | Количество возможных мест, где могло быть удалено число |
|-------------------------|--------------------------------------------------------|
| 1 | 6 |
| 2 | 5 |
| 3 | 4 |
| 4 | 3 |
| 5 | 2 |
| 6 | 1 |

Таким образом, общее количество перестановок, где можно удалить одно число так, чтобы оставшиеся числа были упорядочены по возрастанию, равно сумме всех возможных вариантов удаления чисел: 6 + 5 + 4 + 3 + 2 + 1 = 21.

2) Упорядоченные по убыванию числа:

Также рассмотрим случай, когда оставшиеся числа должны быть упорядочены по убыванию. Здесь принцип анализа будет аналогичным, только мы будем рассматривать возможные места для удаления чисел, начиная с конца строки.

Таблица изменится следующим образом:

| Место для удаления числа | Количество возможных мест, где могло быть удалено число |
|-------------------------|--------------------------------------------------------|
| 6 | 6 |
| 5 | 5 |
| 4 | 4 |
| 3 | 3 |
| 2 | 2 |
| 1 | 1 |

Общее количество перестановок, где можно удалить одно число так, чтобы оставшиеся числа были упорядочены по убыванию, равно сумме всех возможных вариантов удаления чисел: 6 + 5 + 4 + 3 + 2 + 1 = 21.

Таким образом, общее количество перестановок, где можно удалить одно число так, чтобы оставшиеся числа были упорядочены по возрастанию или по убыванию, равно сумме количества перестановок для возрастания и для убывания: 21 + 21 = 42.

Итак, ответ на задачу: количество перестановок чисел 1 2 3 4 5 6, из которых можно удалить одно число так, чтобы оставшиеся были упорядочены по возрастанию или по убыванию, равно 42.
4,5(51 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ