y = 3xe^x
1. Найти область определения функции.
2. Исследовать поведение функции на концах области определения. Найти точки разрыва
функции и ее односторонние пределы в этих точках. Найти вертикальные асимптоты.
3. Найти точки пересечения графика функции с осями координат и интервалы знакопостоянства функции.
4. Найти наклонные асимптоты графика функции.
6. Найти точки экстремума и интервалы возрастания и убывания функции.
7. Найти точки перегиба графика функции и интервалы его выпуклости и вогнутости.
8. Построить график функции, используя все полученные результаты.
y = 3xe^x
1. Найти область определения функции.
2. Исследовать поведение функции на концах области определения. Найти точки разрыва
функции и ее односторонние пределы в этих точках. Найти вертикальные асимптоты.
3. Найти точки пересечения графика функции с осями координат и интервалы знакопостоянства функции.
4. Найти наклонные асимптоты графика функции.
6. Найти точки экстремума и интервалы возрастания и убывания функции.
7. Найти точки перегиба графика функции и интервалы его выпуклости и вогнутости.
8. Построить график функции, используя все полученные результаты.
Пошаговое объяснение:
║ х+2y=5,
из 2 ур.:
х=5-2у,
подставим в 1 ур.:
5*(5-2у)-3у=-1,
25-10у-3у=-1,
-13у=-1-25,
-13у=-26,
у = 2,
х=5-2*2 = 5-4 = 1,
ответ: (1; 2)